



Water Quality Monitoring – Round 3

Site B4A, 37 Friendship Road, Port Botany Vopak Terminals Australia Pty Ltd P034521.004 / C0256 Version A | March 2022



# **Document Control:**

| Project Details:   |                                    |
|--------------------|------------------------------------|
| Report Name:       | Water Quality Monitoring – Round 3 |
| Client:            | Vopak Terminals Australia Pty Ltd  |
| Project:           | Water Quality Monitoring, Botany   |
| Project Reference: | P034521.003 / C0256                |

| Report Version:     |                         |                  |           |       |                             |  |
|---------------------|-------------------------|------------------|-----------|-------|-----------------------------|--|
| Version             | Summary of changes from |                  |           |       |                             |  |
| Date:               | Prepared:               | <b>Reviewed:</b> | Approved: |       | previous version:           |  |
| Ver A<br>31/03/2022 | SYB                     | FKW              | SKU       | Vopak | Original copy of the report |  |

| Report F           | Review:                     |           |                  |                          |                      |  |
|--------------------|-----------------------------|-----------|------------------|--------------------------|----------------------|--|
| Rep                | ort Version / Revision:     | VerA      |                  |                          |                      |  |
| Prepared by:       |                             | Tech      | nical Review by: | Authorised for Issue by: |                      |  |
| Show)              |                             | Inh       |                  | Styr Kuepet              |                      |  |
| Name: Sarah Bolton |                             | Name:     | Fiona Warden     | Name:                    | Silja Kuerzinger     |  |
| Position:          | Environmental<br>Consultant | Position: | Team Leader      | Position:                | Principal Consultant |  |
| Date:              | 28/03/2022                  | Date:     | 29/03/2022       | Date:                    | 31/03/2022           |  |





# **Table of Contents**

| Introduction and Background                | 1                           |
|--------------------------------------------|-----------------------------|
| Site Information and Environmental Setting | 4                           |
| Methodology                                | 6                           |
| Site Assessment Criteria                   | 7                           |
| Data Quality Objectives                    | 8                           |
| Summary of Field Observations              | 9                           |
| Analytical Results                         | L0                          |
| Discussions                                | L2                          |
| Conclusions                                | 13                          |
| Limitations                                | ۱4                          |
|                                            | Introduction and Background |

Figures

Analytical Tables

Appendix A: Groundwater Field Notes

Appendix B: Equipment Calibration Certificates

Appendix C: NATA Laboratory Results, COCs and Sample Receipts



# **Definitions and Abbreviations**

| AHD    | Australian Height Datum                                        |
|--------|----------------------------------------------------------------|
| ANZECC | Australia and New Zealand Environment and Conservation Council |
| ANZG   | Australian and New Zealand Guidelines                          |
| BOD    | Biological Oxygen Demand                                       |
| BTEX   | Benzene, Toluene, Ethylbenzene, Xylenes                        |
| COC    | Chain-of-Custody                                               |
| CoPC   | Contaminant(s) of Potential Concern                            |
| DO     | Dissolved Oxygen                                               |
| DQI    | Data Quality Indicators                                        |
| DQO    | Data Quality Objectives                                        |
| EC     | Electrical Conductivity                                        |
| EPA    | Environment Protection Authority                               |
| GPS    | Global Positioning System                                      |
| ID     | Identification                                                 |
| LOR    | Limit of Reporting                                             |
| NAPL   | Light Non-Aqueous Phase Liquid                                 |
| mBGL   | Metres Below Ground Level                                      |
| MGA    | Map Grid of Australia                                          |
| MW     | Monitoring Well                                                |
| NATA   | National Association of Testing Authorities                    |
| NEPM   | National Environmental Protection Measure                      |
| NEMP   | National Environmental Management Plan                         |
| NAPL   | Non-Aqueous Phase Liquid                                       |
| ORP    | Oxidation Reduction Potential                                  |
| PAH    | Polycyclic Aromatic Hydrocarbons                               |
| PRM    | Progressive Risk Management                                    |
| QAQC   | Quality Assurance and Quality Control                          |
| SWL    | Standing Water Level                                           |
| ТРН    | Total Petroleum Hydrocarbons                                   |
| TRH    | Total Recoverable Hydrocarbons                                 |
| WHS    | Work Health and Safety                                         |
| WMP    | Water Management Plan                                          |
| WQM    | Water Quality Monitoring                                       |



# **1. Introduction and Background**

Progressive Risk Management (PRM) was engaged by Vopak Terminals Australia Pty Ltd (Vopak) to undertake water quality monitoring of existing groundwater wells as part of the Water Quality Monitoring (WQM) program for Site B4A, located at Lot 20 of DP1210638, 37 Friendship Road, Port Botany (hereafter referred to as 'the site').

See Figure 1 for site locality and Figure 2 for site location.

This factual report summaries the key findings from Round 3 (March 2022) of the groundwater sampling event.

The site is currently a liquid fuels storage depot with three above ground storage tanks with a total nominal capacity of 200 megalitres and stores petroleum products.

PRM completed a Baseline Contamination Assessment of the site in March 2020 that was limited to soil investigations and sampling of one existing groundwater well (ref:

P034521.001, Baseline Contamination Assessment, 39 Friendship Road Port Botany, March 2020 - PRM, 2020). A subsequent Water Management Plan (WMP) was prepared for the site for Vopak in June 2021 (ref: 20758-RP-001, Water Management Plan, Vopak Site B4A, 23 June 2021). In relation to groundwater, the WMP identifies the need for installation of five new wells and WQM to be conducted preoperational (monthly) and over the course of the operational period (quarterly for first 2 years). The WMP references the advice provided by EMM Consulting on the installation and sampling requirements for groundwater wells.

To satisfy this requirement, PRM installed five groundwater wells and completed pre operational monitoring in October 2021 (ref:P034521.002 Water Quality Monitoring – Preoperational, Site B4A, 37 Friendship Road, Port Botany – PRM October 2021). No contaminants of potential concern (CoPC) were detected in groundwater above the LOR or above the adopted Site Assessment Criteria (SAC). The data collected during the assessment was considered representative of baseline conditions. A subsequent Round 2 monitoring event was completed by PRM in December 2021 with all analytical results below the adopted SAC and/or laboratory LOR.

This WQM report has been prepared to meet the requirements of quarterly WQM outlined in the WMP. The summary report has been prepared in accordance PRM Proposal Q1502 (dated 15 September 2021). This report should be read in conjunction with the WMP (Vopak, 2021).

## 1.1. Objective

The objective of the WQM is to determine if the groundwater underlying the site has potentially been impacted from onsite activities. All monitoring is to be undertaken as per the requirements in the sites WMP (Vopak, 2021).

#### 1.2. Scope of Work

The following scope of works was undertaken:

- Project management and provision of work health and safety documentation.
- Groundwater sampling in accordance with the requirements specified in the WMP.
- Preparation of a brief factual report providing the details of the results against screening criteria provided in the WMP.

All works have been completed in general accordance with relevant Standards, Codes of Practice, Regulations and guidance.

#### **1.3.** Regulatory Guidance

This WQM is to comply with the requirements of the WMP. The WMP is for the operation of the B4A site and addresses consent conditions for the overall B4 site that are relevant to surface and groundwater management during operation of the facility. The WMP forms part of the Operations Environmental Management Plan (OEMP). The B4 site holds an



Environment Protection License (EPL #6007). The WMP has been submitted to NSW EPA for the modification of the existing EPL to include the B4A site.

The standards and methodologies that have been used to develop this monitoring report are those made or approved by the NSW Environment Protection Authority (EPA) and generally comply with the provisions of the NSW Contaminated Land Management Act (1997). The documents where these standards and methodologies are described comprise:

- Guidelines for the Assessment and Management of Groundwater Contamination (NSW DECC, 2007).
- Australian and New Zealand Environmental and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand, Guidelines for Fresh and Marine Water Quality 2000 (ANZECC, 2000).
- National Health and Medical Research Council Guidelines for Managing Risks in Recreational Water Australia 2008 (NHMRC, 2008).
- National Environment Protection Council (1999, Revised 2013) National Environment Protection (Assessment of Site Contamination) Measure 1999 (NEPC, 2013).
- Australian and New Zealand Guidelines for Fresh and Marine Water Quality, Australian and New Zealand Governments 2018 (ANZG, 2018)
- Approved Methods for the Sampling and Analysis of Water Pollutants in New South Wales (NSW DEC, 2004).
- AS/NZS 5667.11:1998 Water quality Sampling, Part 11: Guidance on sampling of groundwaters

#### **1.4.** Monitoring Schedule

The WMP proposed monitoring schedule includes three phases as detailed below:

**Pre-operational:** Monthly monitoring prior to operation of the facility. Results to be used to identify existing groundwater hydrocarbon contamination.

**Operational Period (first two years):** Quarterly monitoring for the first two years of operation.

**Operational Period (after two years):** Bi-annual monitoring after the initial two year period.

This report is the Round 3 quarterly event for 2021/2022 monitoring period. The proposed monitoring schedule to achieve the objectives of the WMP is included in **Table 1** below:

| Table 1: Monitoring Schedule                        |     |     |     |     |     |     |     |     |     |     |     |     |
|-----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|                                                     | Sep | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug |
| Operational<br>Quarterly<br>Monitoring<br>2021/2022 | >   |     |     | ~   |     |     | ~   |     |     | x   |     |     |
| Operational<br>Quarterly<br>Monitoring<br>2022/2023 | x   |     |     | x   |     |     | x   |     |     | x   |     |     |
| Operational<br>Bi-annual<br>Monitoring<br>From 2023 |     |     |     | x   |     |     |     |     |     | x   |     |     |

Note:

- ✓ denotes monitoring rounds completed
- X denotes monitoring rounds to be completed



## **1.5.** Completed Monitoring Rounds

The completed monitoring rounds are as follows:

- Round 1, reference: P034521.002 Version A, October 2021 (PRM, October 2021).
- Round 2, reference: P034521.003 Version A, December 2021 (PRM, December 2021).
- Round 3, reference: P034521.004 Version A, March 2022 (PRM, March 2022).



# 2. Site Information and Environmental Setting

### 2.1. Site Details

A summary of site details is provided in **Table 2**.

| Table 2: Site Details |                                                                                                                                                                                                                       |  |  |  |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Detail                | Information                                                                                                                                                                                                           |  |  |  |
| Site Address:         | 37 Friendship Road, Port Botany, NSW 2036                                                                                                                                                                             |  |  |  |
| Lot Parcel:           | Lot 20, DP1272410                                                                                                                                                                                                     |  |  |  |
| Site Area             | Approximately 2.5 hectares                                                                                                                                                                                            |  |  |  |
| Local Council:        | Randwick City Council                                                                                                                                                                                                 |  |  |  |
| Current Zoning:       | SP1 – Special Activities under State Environmental Planning Policy (Three Ports) 2013                                                                                                                                 |  |  |  |
| Current site use      | Commercial/industrial land use large-scale storage of petroleum-based products.                                                                                                                                       |  |  |  |
| Surrounding land use  | The site is within Port Botany, an industrial and commercial port precinct.<br><b>North</b> : Commercial/industrial properties and port operations.<br><b>South:</b> Commercial/industrial properties and Botany Bay. |  |  |  |
|                       | <b>East:</b> A shipping container yard borders the site, with Yarra Bay and Yarra Bay Park further east.<br><b>West:</b> Vopak Site B and Botany Bay.                                                                 |  |  |  |

#### 2.2. Current Site Description and Inspection

The site is an unmanned product storage facility. The centre of the site consists of three above ground holding tanks for petroleum-based products (automotive diesel oil), which is bunded by a 2-3m wall. A road, understood to be utilised for fire access, runs along the perimeter of the site.

#### 2.3. Environmental Setting

The site environmental setting is summarised in Table 3.

| Table 3: Enviro        | Table 3: Environmental Setting                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Soils Landscape:       | Based on review of on-line mapping (eSPADE, NSW OEH 2020) soils at the site are mapped as disturbed terrain. Disturbed terrain commonly includes turfed fill areas capped with up to 40 cm of sandy loam or up to 60cm of compacted clay over fill or waste materials including rock, demolition rubble and waste materials.                                      |  |  |  |  |
|                        | The WMP describes the site as located on reclaimed shoreline, consisting of anthropogenic fill and dredged sediments overlying Quaternary unconsolidated sediments.                                                                                                                                                                                               |  |  |  |  |
|                        | PRM 2020 encountered fill and reclaimed sands consistent with the above description.<br>Boreholes completed during well installation (PRM, 2021) encountered roadbase materials<br>imported to the site for construction, with sandy fill material and underlying sands<br>consistent with the above description.                                                 |  |  |  |  |
| Acid Sulfate<br>Soils: | Randwick Local Environment Plan (LEP) 2012 Acid Sulfate Risk Map indicates that site is not within an Acid Sulfate Risk area.                                                                                                                                                                                                                                     |  |  |  |  |
|                        | A review of the Atlas of Australian Acid Sulfate Soils indicated there is low probability of acid sulfate soils occurring on site (6-70%).                                                                                                                                                                                                                        |  |  |  |  |
| Geology:               | A review of the Sydney 1:100,000 Geological Map (Geological Series Sheet 9130 (Edition 1), 1983, Department of Mineral Resources) indicated the site underlain by man-made fill, comprising dredged estuarine sand and mud, demolition rubble, industrial and household waste. Below the fill there are Botany Sand beds overlying Triassic Hawkesbury Sandstone. |  |  |  |  |
|                        | The WMP indicates Quaternary unconsolidated sediments underlie the site primary consisting of aeolian and beach sand with occasional peat, mud, gravel and shelly layers.                                                                                                                                                                                         |  |  |  |  |



|                           | nmental Setting                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | The main bedrock unit that underlies the Quaternary infill is the Triassic Hawksbury Sandstone.                                                                                                                                                                                                                                                                                                                                               |
| Hydrogeology:             | A search of the Water NSW groundwater map identified six registered groundwater bores within 500 m of the site. No registered wells were identified within the site.                                                                                                                                                                                                                                                                          |
|                           | The WMP describes the hydrogeology at the site as follows:                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | The hydrogeology of the site is defined by two groundwater systems in a stacked configuration. These are:                                                                                                                                                                                                                                                                                                                                     |
|                           | 1. The Botany Sands aquifer: consisting of unconfined to semi - confined groundwater systems within the Quaternary unconsolidated sediments.                                                                                                                                                                                                                                                                                                  |
|                           | 2. The Hawksbury Sandstone: comprising of deeper confined groundwater systems within the fractured/porous Triassic sandstone.                                                                                                                                                                                                                                                                                                                 |
|                           | The average thickness of the Botany Sands aquifer is 15 m with a maximum thickness of<br>up to 35 m. A nearby exploration borehole (GW109706), located approximately 100 m<br>south of site, intercepted weathered sandstone at approximately 33 m depth. The aquifer<br>is primarily recharged by direct rainfall infiltration in open areas such as golf courses and<br>parklands (ie Centennial Park, Moore Park and Randwick Racecourse). |
|                           | The aquifer is highly permeable and productive with yields ranging from 1 to 41 litres per second. Salinity ranges from fresh to brackish and can be highly saline in areas with tidal influence and estuarine muds.                                                                                                                                                                                                                          |
|                           | As a result of over a century of industrial and urban land use, the aquifer is highly degraded in parts due to diffuse and point sources of pollution. In areas of the Botany Sands aquifer, access to groundwater is restricted, and further embargoed from future usage, due to high concentrations of dissolved metals, nutrients, bacteria and                                                                                            |
|                           | hydrocarbons.                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                           | The regional groundwater flow in the Botany Sands aquifer is from the north east to south west, discharging at Botany Bay foreshores and low lying depressions (ie ponds, culverts) that intercept the groundwater table. Local groundwater flows are variable, typically controlled by topography.                                                                                                                                           |
|                           | PRM 2020 and WMP indicate standing groundwater was encountered from 2 and 4 mBGL at former wells on site, with groundwater flow direction likely in a southerly direction towards Botany Bay. This is consistent with what was encountered during the Round 3 monitoring event.                                                                                                                                                               |
| Topography /<br>Drainage: | The current site surface is flat and has been levelled for the construction of the storage tanks and road. Stormwater within the bunded area and the site itself is understood to be managed in accordance with the WMP.                                                                                                                                                                                                                      |
| Sensitive<br>Receptors:   | Aquatic ecosystems of nearby Yarra Bay and Frenchmans Bay.                                                                                                                                                                                                                                                                                                                                                                                    |



# 3. Methodology

#### 3.1. Investigation Rationale

The purpose of this sampling event is to determine if the groundwater underlying the site has potentially been impacted from onsite activities. All sampling was completed from the five existing groundwater wells installed by PRM in October 2021 in accordance with the WMP.

### 3.2. Preliminaries

#### 3.2.1. Health and Safety

All site work was carried out in accordance with the Project Safety Environmental Plan (PSEP) and site-specific Safe Work Method Statement (SWMS), which were developed prior to the commencement of any onsite fieldworks. Daily Site Hazard Assessment Checklist (SHAC) forms were completed on site, subsequent to a site walkover and assessment of the work area to identify site specific hazards prior to commencing works.

#### 3.2.2. Groundwater Well Sampling

At each well, depth to water and total depth measurements was recorded using a multiphase interface probe that detects water levels and the presence of light non-aqueous phase liquids (LNAPL). If suspected LNAPL was detected, a single use bailer was to be used to collect the LNAPL for visual confirmation.

Groundwater samples were collected using low-flow peristaltic pump. The standing water level (SWL) was monitored during low flow pumping to ensure significant drawdown did not occur.

Physical and chemical water quality indicators were also recorded at the time of sampling using a calibrated Water Quality Meter. This field instrument measures dissolved oxygen (DO), electrical conductivity (EC), pH, redox potential, and temperature of the water being sampled. The water quality parameters were considered stable when successive measurements (generally 3-5 minutes apart) were found to meet the stabilisation criteria outlined in the table below.

| Table 4: Groundwa | able 4: Groundwater Stabilisation Parameters                  |  |  |  |
|-------------------|---------------------------------------------------------------|--|--|--|
| Parameter         | Stabilisation Criterion                                       |  |  |  |
| рН                | ± 0.05 pH units                                               |  |  |  |
| EC                | ± 3 % of reading                                              |  |  |  |
| DO                | $\pm$ 10 % of reading or $\pm$ 0.2 mg/L, whichever is greater |  |  |  |
| ORP               | ± 10 mV                                                       |  |  |  |

Wells were immediately sampled following stabilisation.

The water quality meter was calibrated prior to sampling by the hire company. Samples were collected in appropriately preserved bottles provided by the laboratory and immediately stored on ice in an esky. Containers were labelled with the sample ID, project number and date.

#### 3.3. Decontamination

The reusable equipment (interface probe) was decontaminated after use by scrubbing with brushes and Decon 90 solution followed by rinsing with potable water.

Some materials and equipment used for sampling were single-use (e.g. nitrile gloves) and/or dedicated to individual wells (e.g. tubing and bailers). These items were not decontaminated and were placed within the site vehicle for appropriate disposal.



# 4. Site Assessment Criteria

## 4.1. Contaminants of potential of concern (CoPC)

Consistent with site operations, which include the storage of hydrocarbon fuels, the monitoring program has been designed to target the following potential contaminants of concern (CoPC) at all groundwater monitoring wells (MB01-MB05):

- Total Petroleum Hydrocarbons (TPH),
- Benzene, Toluene, Ethylbenzene, Xylene (BTEX),
- Polycyclic Aromatic Hydrocarbons (PAH).

It is noted that the site is surrounded by industrial activities and is underlain by the botany sands aquifer which has been impacted by a number of industrial activities as discussed in the WQM – Pre-operational report (PRM, 2021). The site has been subject to prior intrusive groundwater and soil investigations (PRM, 2020 and 2021). A broad range of contaminants of concern in addition to those stated above were investigated by PRM, 2020 and Jacobs 2015 (see PRM, 2020 for summary). It was therefore not considered necessary to assess groundwater at the site for CoPC that are unlikely to be introduced from the operation of the current fuel storage activity.

#### 4.2. Adopted Site Assessment Criteria

As outlined in the WMP, the groundwater site assessment (SAC) has been derived from ANZG (2018). The SAC adopted have been selected based on the current and future commercial/industrial land use with groundwater underlying the site and receiving ecosystems considered to be disturbed marine systems.

Where marine water values were not provided, freshwater criteria were adopted. No criteria is provided in ANZG 2018 for PAH and TPH and so the laboratory limit of reporting (LOR) has been adopted.

The various groundwater SAC adopted for the site are summarised in Table 5.

| Table 5: Groundwater Assessment Criteria Summary |                     |  |
|--------------------------------------------------|---------------------|--|
| Contaminant                                      | Information         |  |
| Benzene                                          | 700                 |  |
| Ethylbenzene                                     | 80                  |  |
| Toluene                                          | 180                 |  |
| Xylenes                                          | 350                 |  |
| PAHs                                             | <lor< th=""></lor<> |  |
| ТРН                                              | <lor< th=""></lor<> |  |

#### 4.3. Baseline Conditions

In addition to the SAC, subsequent sampling events are to be compared to pre-operational baseline data as presented in PRM, October 2021. **Table 6** below summarises baseline conditions.

| Table 6: Baseline Conditions |                     |  |
|------------------------------|---------------------|--|
| Contaminant                  | formation           |  |
| BTEX                         | <lor< th=""></lor<> |  |
| PAHs                         | <lor< th=""></lor<> |  |
| ТРН                          | <lor< th=""></lor<> |  |



# 5. Data Quality Objectives

A Data Quality Objectives (DQOs) process is used to define the type, quantity and quality of data needed to support decisions relating to the environmental condition of a site.

**Table 7** summarises the DQO process for the sampling works prescribed within the WMP (Vopak, 2021).

| Table 7: DQO Process                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Step 1:<br>State the problem                                 | WQM is required to determine if the groundwater underlying the site has potentially been impacted from onsite activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Step 2:<br>Identify the decisions /<br>goal of the study     | Is groundwater at the site contaminated with hydrocarbons or PAHs from fuel storage operations?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Step 3:<br>Identify information input                        | <ul> <li>The primary information inputs required are:</li> <li>WMP (Vopak, 2021).</li> <li>Field observations.</li> <li>Review of previous reports.</li> <li>Laboratory sample results.</li> <li>Field and laboratory QAQC findings.</li> </ul>                                                                                                                                                                                                                                                                                                                                                 |
| Step 4:<br>Define the study boundary                         | <ul> <li>The extent of the study boundary is as follows:</li> <li>Lateral: Boundary of Site B4A, as outlined within the WMP, is shown in Figure 2.</li> <li>Vertical: The depth of potential water pathways or receptors i.e. the groundwater underneath the site, limit of investigation.</li> <li>Temporal: The date of inspection and sampling and any previous data.</li> </ul>                                                                                                                                                                                                             |
| Step 5:<br>Develop an analytical<br>approach / decision rule | Groundwater is considered contaminated if any analyte concentrations exceed criteria (or is detected above LOR) (or if deemed appropriate, the 95% UCL of the mean concentrations) and there is no evidence they are associated with background concentrations for the area, which was established during the baseline monitoring (PRM, 2021).                                                                                                                                                                                                                                                  |
| Step 6:<br>Specify the acceptable<br>criteria                | <ul> <li>Specific limits for this project are in accordance with the appropriate guidance within the WMP, or the appropriate national or state regulator, appropriate indicators of data quality, and standard procedures for field sampling and handling. This includes, but is not limited to, the following: <ul> <li>Analytes of concern have been including in testing.</li> <li>Appropriate field methodologies have been undertaken.</li> <li>Relevant criteria's have been adopted.</li> <li>Acceptance limits for laboratory and field QC have been adhered to.</li> </ul> </li> </ul> |
| Step 7:<br>Optimise design for<br>obtaining data             | This sampling program presented is aimed at obtaining the necessary data to allow the identified decisions in Step 2 to be made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



## 6. Summary of Field Observations

The following observations were made by PRM during groundwater sampling on 14 March 2022.

#### 6.1. Groundwater

- Groundwater was present in all five wells with a standing water level between 2.687 and 3.843 metres below top of casing (mbtoc).
- During sampling, all wells were gauged for the presence of LNAPL and SWL. No LNAPL or odours were encountered.

Groundwater field sheets are provided in **Appendix A** and equipment calibration certificates included in **Appendix B**.

#### 6.1.1. Groundwater Field Screening

Groundwater physiochemical parameters were measured prior to sampling with the field measurements summarised in **Table 7**. A copy of field sheets is included in **Appendix A**.

| Table      | 7: Ground      | dwater F          | ield Scre        | ening | Results       |               |              |              |                              |
|------------|----------------|-------------------|------------------|-------|---------------|---------------|--------------|--------------|------------------------------|
| Well<br>ID | SWL<br>(mbtoc) | Well RL<br>(mAHD) | SWL RL<br>(mAHD) | pН    | EC<br>(uS/cm) | Redox<br>(mV) | DO<br>(mg/L) | Temp<br>(°C) | Comments                     |
| MB01       | 2.687          | 3.638             | 0.951            | 7.03  | 704           | -104.2        | 1.00         | 22.6         | Clear, no odour<br>or sheen. |
| MB02       | 2.792          | 3.642             | 0.850            | 7.24  | 675           | -119.8        | 2.799        | 23.2         | Clear, no odour<br>or sheen. |
| MB03       | 3.776          | 4.497             | 0.721            | 7.50  | 756           | -119.2        | 0.32         | 21.2         | Clear, no odour<br>or sheen. |
| MB04       | 3.843          | 4.659             | 0.816            | 6.42  | 1108          | -95.8         | 0.93         | 23.1         | Clear, no odour<br>or sheen. |
| MB05       | 3.503          | 4.216             | 0.713            | 6.83  | 1798          | -136.4        | 0.39         | 22.2         | Clear, no odour<br>or sheen. |

Based on the field parameters, the following interpretations have been made:

- pH is neutral to slightly acidic.
- Electrical conductivity is indicative of fresh water. This is comparable to the Pre-Operational groundwater field screening from October and December 2021.
- No visual or olfactory indications of contamination were present during sampling.



# 7. Analytical Results

The following sections summarise the analytical groundwater results of the Round 3 monitoring. Refer to **Figure 2** for site layout and investigation locations discussed herein.

#### 7.1. Groundwater Analytical Results

A total of five primary groundwater samples and one QA/QC duplicate were submitted for analysis for the following CoPC:

- Total recoverable hydrocarbons (TRH)
- BTEX
- PAH

TRH analysis was undertaken instead of TPH. It is standard industry practice to analyse for TRH in the first instance and if detectable TRH concentrations are present, additional analysis to calculate the TPH results would be completed.

Results are provided in the attached **Analytical Table A1** and are summarised in **Table 8**. NATA accredited laboratory certificates are shown in **Appendix C**.

| Table 8: Su | mmary of Groundwater Analytical Results                                               |
|-------------|---------------------------------------------------------------------------------------|
| Analyte     | Results                                                                               |
| TRH         | All samples below LOR, below the adopted SAC and consistent with baseline conditions. |
| BTEX        | All samples below LOR, below the adopted SAC and consistent with baseline conditions. |
| РАН         | All samples below LOR, below the adopted SAC and consistent with baseline conditions. |

## 7.2. Quality Assurance / Quality Control

The results of the laboratory analysis for field QC samples are evaluated in the attached **Analytical Table A2**, and summarised as follows:

- One groundwater duplicate was obtained from primary sample MB01 as part of the baseline monitoring in accordance with the WMP. The duplicate was collected and analysed at a rate of 20% which achieves/exceeds the minimum 5%, compared to primary data.
- As all results obtained for the primary groundwater sample and duplicate sample were below the limit of reporting, there were no calculated RPD values. This therefore meets the RPD acceptance criteria of all RPDs <50% for organic contaminants.
- The sampling was undertaken during one sampling event on the 14 March 2022. One trip blank (TB) and trip spike (TS) was utilised for the event. Concentrations of selected volatile CoPC for the TB were all below detection limits indicating that the potential for significant cross contamination had not occurred during the course of the round trip from the site to the laboratory. The TS analytical results indicated that the percentage loss for BTEX during the sampling and transport to the laboratory was minimal indicating that appropriate preservation techniques were employed.
- One rinsate sample (R1) returned an analytical result above LOR (160mg/L) of TRH C10-C16. The laboratory report notes that the single peak was found to not be consistent with hydrocarbons and is consistent with storage of deionised water within a plastic container, as supplied by the lab. All samples returned analytical results below the LOR for hydrocarbons. As such, there is no indication of cross contamination from sampling equipment.
- All DQOs, as stated above, were achieved during field works.

Detailed laboratory QA/QC results are presented on the laboratory testing certificates in **Appendix C** and summarised in the attached **Analytical Tables.** 



Based on the information referenced above, it was concluded that data generated during the investigation is of an acceptable quality to achieve the objective of the quarterly monitoring event.



# 8. Discussions

The results indicate that all CoPC were not detected above the laboratory LOR and not above the adopted SAC. All sample results from Round 3 were comparable to the baseline results from Round 1 (October 2021) and Round 2 (December 2021).

Based on the analytical results and field observations, there is no indication of contamination associated with the CoPC analysed for at the five sampling locations.

Groundwater flow direction was calculated during the first round of monitoring (PRM, 2021), and was found to flow in a south easterly direction. Groundwater flow direction encountered during round 3 was consistent with the baseline observations (see groundwater contours in **Figure 3**).



# 9. Conclusions

PRM were engaged by Vopak to complete Round 3 of the quarterly WQM in line with WMP. Five monitoring wells were sampled in accordance with the WMP. No CoPC were detected in groundwater above the LOR or above the adopted SAC. All sample results were consistent with baseline data obtained prior to operation of the facility (PRM, 2021). No field observations of contamination were noted during PRMs site works.

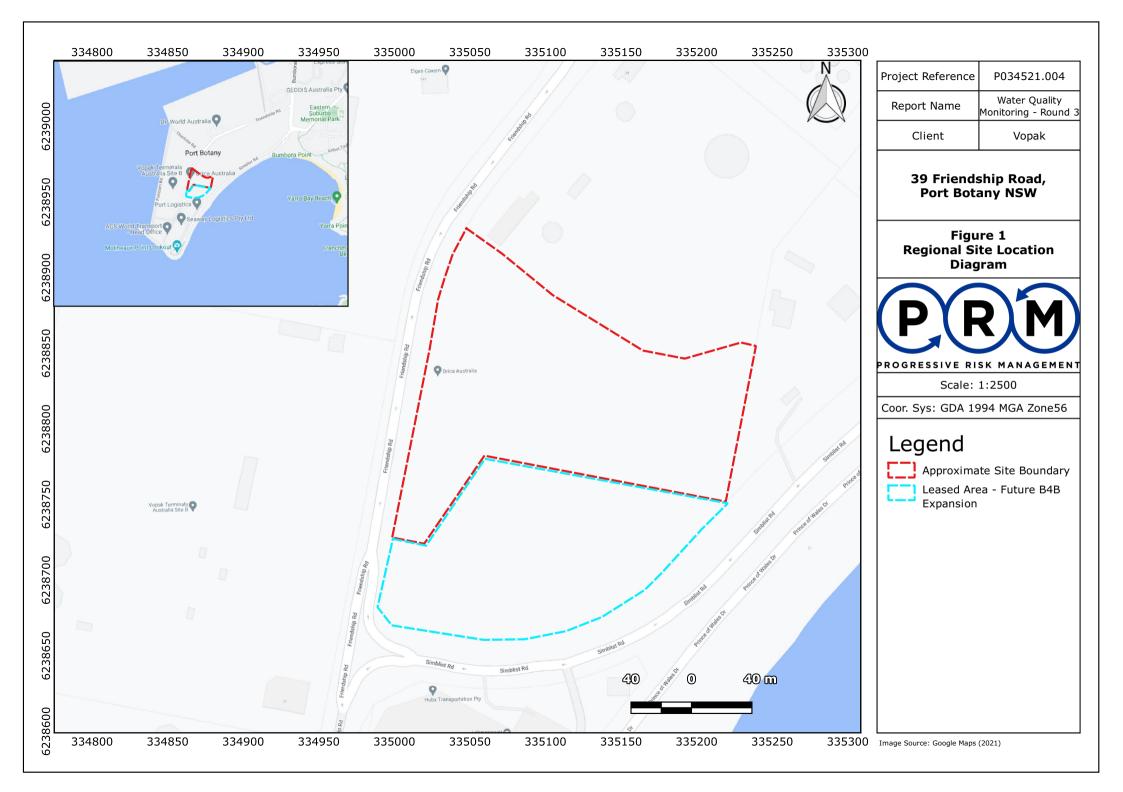
Based on the findings of this WQM event, no indication of groundwater contamination was identified at the sample locations.

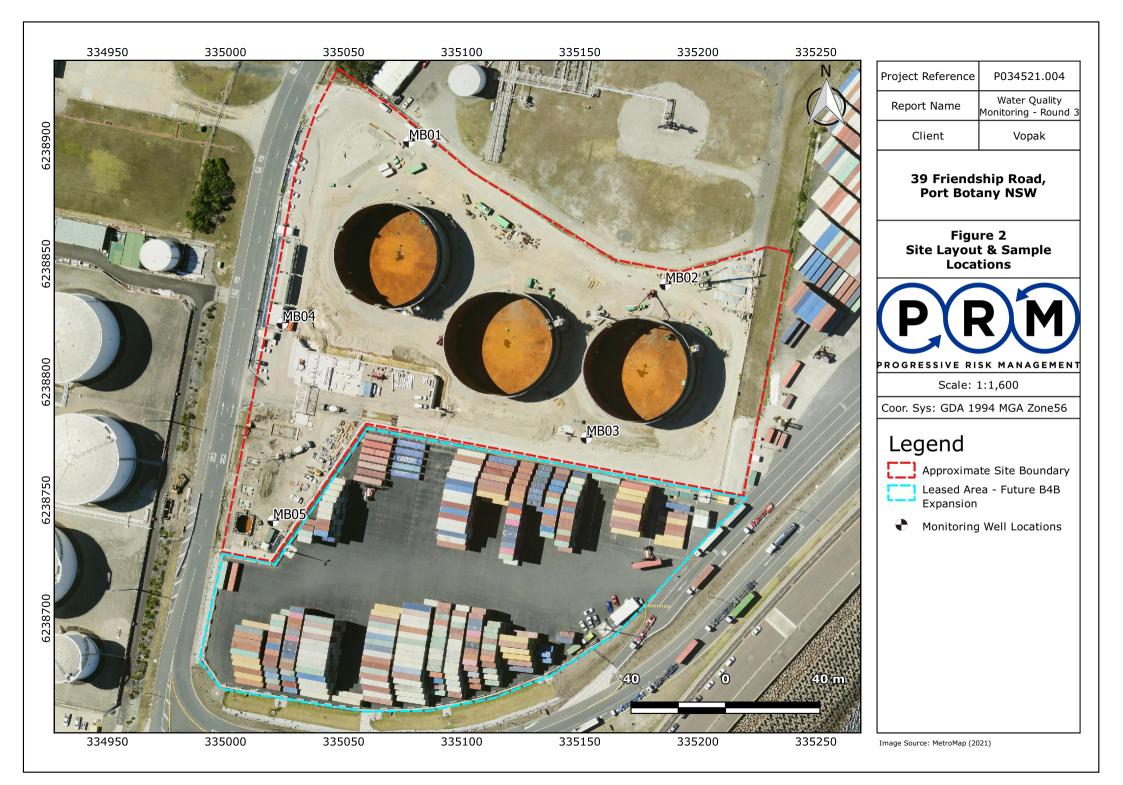


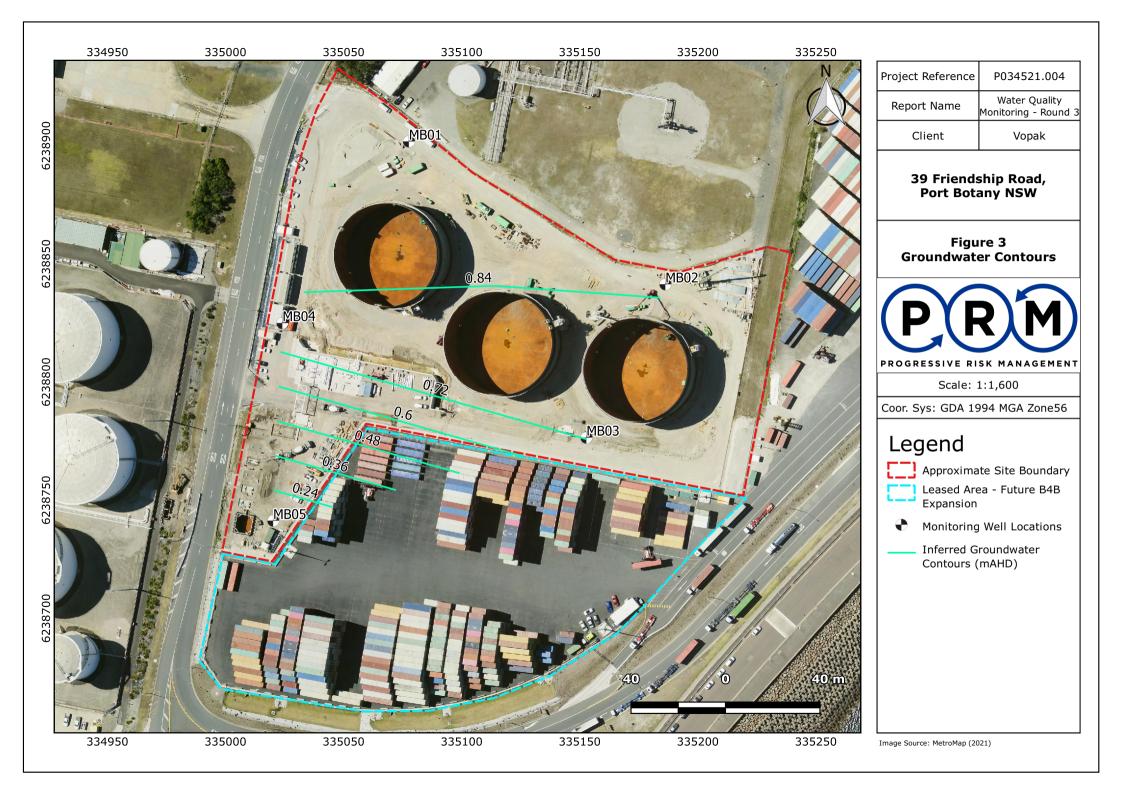
# 10. Limitations

This report is confidential and has been prepared by Progressive Risk Management (PRM) for Vopak Terminals Australia Pty Ltd (the client). This report may only be used and relied upon by the client and must not be copied to, used by or relied upon by any person other than the client. This report is limited to the observations made by PRM during the Water Quality Monitoring, and was limited to the assessment of contaminants of concern in groundwater only, as detailed in the *Scope of Works*.

All results, conclusions and recommendations presented should be reviewed by a competent person before being used for any other purpose. PRM accepts no liability for use of, interpretation of or reliance upon this report by any person or body other than the client. Third parties must make their own independent inquiries.


This report should not be altered amended or abbreviated, issued in part or issued incomplete without prior checking and approval by PRM. PRM accepts no liability that may arise from the alteration, amendment, abbreviation or part-issue or incomplete issue of this report. To the maximum extent permitted by law, all implied warranties and conditions in relation to the services provided by PRM and this report are expressly excluded (save as agreed otherwise with the client).


PRM shall bear no liability in relation to any change to site conditions after the date of this report. This report does not provide a complete assessment of the environmental status of the site, and it is limited to the scope and limitations defined herein (*Scope of Works*). Should information become available regarding conditions at the site including previously unknown sources of contamination, PRM reserves the right to review the report in the context of the additional information.




# Figures

Figure 1: Regional Site Location Figure 2: Site Layout and Sample Locations Figure 3: Groundwater Contours









**Analytical Tables** 



|        | TRH              |                   |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | BT      | EX           |                |            | PAHs          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                     |                                                                                                         |                                                                             |                                                 |                     |
|--------|------------------|-------------------|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|--------------|----------------|------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|---------------------|
|        |                  |                   |                   | C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | C6-C10 (F1 minus BTEX)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C10-C16 (F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C10-C16 (F2 minus<br>Naphthalene)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C16-C34 (F3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | C34-C40) F4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Benzene | Toluene | Ethylbenzene | Xylene (m & p) | Xylene (o) | Total xylenes | Naphthalene                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Acenaphthylene                                                                                                                                                                                                                                                                                                                                                                                                                                          | Acenaphthene                                                                                                                                                                                                                                                                                                                                                                                                                | Fluorene                                                                                                                                                                                                                                                                                                                                                                                        | Phenanthrene                                                                                                                                                                                                                                                                                                                                                        | Anthracene                                                                                                                                                                                                                                                                                                                              | Fluoranthene                                                                                                                                                                                                                                                                                                | Pyrene                                                                                                                                                                                                                                                                          | Benzo(a) anthracene                                                                                                                                                                                                                                 | Chrysene                                                                                                                                                                                                                | Benzo(b,j+k)fluoranthene                                                                                                                                                                    | Benzo(a) pyrene                                                                                                                                                 | Indeno(1,2,3-c,d)pyrene                                                                                                             | Dibenzo(a,h)anthracene                                                                                  | Benzo(g,h,i)perylene                                                        | Benzo(a) pyrene TEQ                             | Total +vePAH's      |
|        |                  |                   |                   | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | µg/L    | μg/L    | µg/L         | µg/L           | µg/L       | μg/L          | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                                                    | µg/L                                                                                                                                                                                                                                                                                                                                                                                                                        | µg/L                                                                                                                                                                                                                                                                                                                                                                                            | µg/L                                                                                                                                                                                                                                                                                                                                                                | µg/L                                                                                                                                                                                                                                                                                                                                    | µg/L                                                                                                                                                                                                                                                                                                        | µg/L                                                                                                                                                                                                                                                                            | µg/L                                                                                                                                                                                                                                                | µg/L                                                                                                                                                                                                                    | µg/L                                                                                                                                                                                        | µg/L                                                                                                                                                            | µg/L                                                                                                                                | µg/L                                                                                                    | µg/L                                                                        | µg/L                                            | μg/L                |
|        |                  |                   | LOR               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1       | 1       | 1            | 2              | 1          | 1             | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                 | 0.1                                                                                                                                                                                                                                                                                                                                     | 0.1                                                                                                                                                                                                                                                                                                         | 0.1                                                                                                                                                                                                                                                                             | 0.1                                                                                                                                                                                                                                                 | 0.1                                                                                                                                                                                                                     | 0.2                                                                                                                                                                                         | 0.1                                                                                                                                                             | 0.1                                                                                                                                 | 0.1                                                                                                     | 0.1                                                                         | 0.5                                             | 0.1                 |
|        |                  | Adopted Site Ass  | sessment Criteria | <lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th>700</th><th>180</th><th>80</th><th></th><th></th><th>350</th><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th>700</th><th>180</th><th>80</th><th></th><th></th><th>350</th><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th>700</th><th>180</th><th>80</th><th></th><th></th><th>350</th><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""><th><lor< th=""><th>700</th><th>180</th><th>80</th><th></th><th></th><th>350</th><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""><th>700</th><th>180</th><th>80</th><th></th><th></th><th>350</th><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th>700</th><th>180</th><th>80</th><th></th><th></th><th>350</th><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | 700     | 180     | 80           |                |            | 350           | <lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""><th><lor< th=""></lor<></th></lor<></th></lor<> | <lor< th=""><th><lor< th=""></lor<></th></lor<> | <lor< th=""></lor<> |
|        | E                | Baseline Data (PR | M October 2021)   | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1      | <1      | <1           | <2             | <1         | <3            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                      | <2                                                                                                                                                                                          | <1                                                                                                                                                              | <1                                                                                                                                  | <1                                                                                                      | <1                                                                          | <5                                              | <lor< th=""></lor<> |
| Sample | Monitoring Round | Date              | Report            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |         |              |                |            |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                                 |                                                                                                                                     |                                                                                                         |                                                                             | (                                               | 1                   |
| MB01   | 3                | 14/03/2022        | 290899            | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1      | <1      | <1           | <2             | <1         | <3            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                      | <2                                                                                                                                                                                          | <1                                                                                                                                                              | <1                                                                                                                                  | <1                                                                                                      | <1                                                                          | <5                                              | <lor< th=""></lor<> |
| MB02   | 3                | 14/03/2022        | 290899            | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1      | <1      | <1           | <2             | <1         | <3            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                      | <2                                                                                                                                                                                          | <1                                                                                                                                                              | <1                                                                                                                                  | <1                                                                                                      | <1                                                                          | <5                                              | <lor< th=""></lor<> |
| MB03   | 3                | 14/03/2022        | 290899            | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1      | <1      | <1           | <2             | <1         | <3            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                      | <2                                                                                                                                                                                          | <1                                                                                                                                                              | <1                                                                                                                                  | <1                                                                                                      | <1                                                                          | <5                                              | <lor< th=""></lor<> |
| MB04   | 3                | 14/03/2022        | 290899            | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1      | <1      | <1           | <2             | <1         | <3            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                      | <2                                                                                                                                                                                          | <1                                                                                                                                                              | <1                                                                                                                                  | <1                                                                                                      | <1                                                                          | <5                                              | <lor< th=""></lor<> |
| MB05   | 3                | 14/03/2022        | 290899            | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1      | <1      | <1           | <2             | <1         | <3            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                      | <2                                                                                                                                                                                          | <1                                                                                                                                                              | <1                                                                                                                                  | <1                                                                                                      | <1                                                                          | <5                                              | <lor< th=""></lor<> |
| DUP01  | 3                | 14/03/2022        | 290899            | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <1      | <1      | <1           | <2             | <1         | <3            | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                                                                                                                                      | <1                                                                                                                                                                                                                                                                                                          | <1                                                                                                                                                                                                                                                                              | <1                                                                                                                                                                                                                                                  | <1                                                                                                                                                                                                                      | <2                                                                                                                                                                                          | <1                                                                                                                                                              | <1                                                                                                                                  | <1                                                                                                      | <1                                                                          | <5                                              | <lor< th=""></lor<> |



Sample MB01

DUP01

Water

|        |            |        |                           | ті                                   | RH          |             |         | ВТ      | EX           |         |                | PAHs               |                     |
|--------|------------|--------|---------------------------|--------------------------------------|-------------|-------------|---------|---------|--------------|---------|----------------|--------------------|---------------------|
|        |            |        | F1 - TRH C6-C10 less BTEX | F2 - TRH C10-C16 less<br>naphthalene | TRH C16-C34 | TRH C34-C40 | Benzene | Toluene | Ethylbenzene | Xylenes | Benoz(a)pyrene | Benzo(a)pyrene TEQ | Total +ve           |
|        |            |        | mg/kg                     |                                      | mg/kg       | mg/kg       | mg/kg   | mg/kg   | mg/kg        | mg/kg   | mg/kg          | mg/kg              | •                   |
|        |            | LOR    | 10                        | 50                                   | 100         | 100         | 1       | 1       | 1            | 3       | 1              | 5                  | -                   |
| Matrix | Date       | Report |                           |                                      |             |             |         |         |              |         |                |                    |                     |
| Water  | 14/03/2022 | 290899 | <10                       | <50                                  | <100        | <100        | <1      | <1      | <1           | <3      | <1             | <5                 | <lor< td=""></lor<> |

<100

-

<100

-

<1

-

<1

-

<1

-

<3

-

<5

-

<1

-

<LOR

-

<50

-

<10

-

290899

**RPD Calculation** 

14/03/2022



**Appendix A: Groundwater Field Notes** 

|                                                                           |                                                                                      | PMENT, GA<br>IG DATA SI<br>2\   | HEET                                         |                                      | <b>WE</b><br>Vof                                      | LL No:<br>vak                                | 01                 |                                                    |                                                                                               |      |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------|--------------------------------------|-------------------------------------------------------|----------------------------------------------|--------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------|------|
|                                                                           |                                                                                      |                                 |                                              |                                      | (                                                     |                                              |                    |                                                    |                                                                                               |      |
| Maintain                                                                  | Date :<br>uging Method :<br>Time :<br>SWL :                                          | 08:22<br>2.687<br>Water<br>N/A  |                                              |                                      | Bore Depth :<br>to LNAPL :                            | formed By :<br>672                           | -4                 | Wei<br>LNAF<br>(If yes,<br>DNAF<br>(If yes,        | I Diameter : 50 m<br>PL Present : Y /<br>thickness) :<br>PL Present : Y /<br>thickness) :<br> | >    |
|                                                                           | Date :<br>Date :<br>Purge Method :<br>Time Started :<br>Time Stopped :<br>Comments : |                                 | SWL <del>(start) :</del><br>SWL (end) :      |                                      |                                                       | Removed :<br>arge Rate :                     |                    | Bore D                                             | neter :<br>epth (start) :<br>epth (end) :<br>2L Present : Y / N<br>thickness) :               |      |
| Samp<br>San                                                               | Date :<br>npling Method :<br>Time Started :<br>Time Stopped :                        | LDPE                            | 2<br>Dump                                    | Per                                  | formed By :                                           | Samp                                         | WL (start) :       | Well Diar<br>5. m<br>2.68<br>2.67                  | m<br>7                                                                                        |      |
|                                                                           | Duplicate Sam                                                                        | ple Collected?                  | ()<br>N                                      |                                      | Duplicate \$                                          | Sample ID :                                  | Dup                | 01                                                 |                                                                                               |      |
| Field An<br>Time                                                          | alyses<br>Volume<br>Removed (L)                                                      | EC<br>(uS/cm)                   | pH                                           | Temp<br>(C)                          | Redox<br>(mV)                                         | Dissolve<br>(ppm)                            | d Oxygen<br>(mg/L) | SWL<br>(m)                                         | Comments (colour, turbid<br>odours, sheen etc)                                                | ity, |
| 08:35<br>08:41<br>Q8:44<br>08:44<br>08:44<br>08:50<br>Stabilisation Crite |                                                                                      | 717<br>717<br>715<br>708<br>704 | 7.05<br>6.95<br>7.04<br>7.04<br>7.04<br>7.03 | 22.5<br>22.6<br>22.6<br>22.6<br>22.6 | -79.9.<br>-90.1<br>-96.2<br>-99.6<br>-102.3<br>=107.2 | 1.13<br>1.26<br>1.13<br>1.00<br>1.00<br>1.00 | 10%                | 2.672<br>2.669<br>2.672<br>2.669<br>2.674<br>2.678 | Clear, no                                                                                     | dour |
| Well Volume (<br>Casing Diameter<br>Conversion Fac                        | March State                                                                          | 25mm<br>0.98                    | 50mm<br>1.96                                 | 100mm<br>7.85                        | 125mm<br>31.4                                         | 150mm<br>49.1                                | 200mm<br>70.7      | 250mm<br>125.7                                     | 300mm<br>196.3                                                                                |      |
| TOTAL WELL [                                                              |                                                                                      | ATER LEVEL (<br>WATER COLU      | (=)<br>IMN (X)CO                             | NVERSIO                              | N FACTOR                                              | (=)LITR<br>_(=)                              | ES PER W           | /ELL VOLU                                          | IME                                                                                           |      |

| Project No                                       | P0345                                                                            | 521                                                         | Proj                                             | ject Name :                                     | VOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ak                                                             | GN                   | 1E PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | OGRESSIVE RISK MANA                               |
|--------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| Gaug                                             | ling                                                                             |                                                             |                                                  |                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
|                                                  | Date :                                                                           | 14 3122                                                     | 2                                                |                                                 | Per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | formed By :                                                    | SYR                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1           |
| Ga                                               | uging Method :                                                                   | IP<br>09:18                                                 |                                                  | P                                               | ore Depth :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 90                                                           | 1                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Diameter : Somm                                   |
|                                                  | SWL :                                                                            | 2.79                                                        | 2                                                |                                                 | to LNAPL :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | Ŧ                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | thickness):                                       |
|                                                  | Comments :                                                                       | Water                                                       | ( in                                             | Gece                                            | ttic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PL Present : Y / (N)                              |
| Maintain                                         | ance required :                                                                  |                                                             |                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                | Visual co            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | thickness):                                       |
|                                                  | hoto Number :                                                                    |                                                             |                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                | visual co            | miniation v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                   |
|                                                  |                                                                                  |                                                             |                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
| Purging / De                                     | Date :                                                                           |                                                             |                                                  | Per                                             | formed By :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                | in the second second | Well Diar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | meter ·                                           |
|                                                  | Purge Method :                                                                   |                                                             |                                                  | 10.                                             | ionnoù by i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
|                                                  | Time Started :                                                                   |                                                             | SWL (start) :                                    |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Removed :                                                      |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | epth (start) :                                    |
|                                                  | Time Stopped :<br>Comments :                                                     |                                                             | SWL (end) :                                      |                                                 | Discr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | arge Rate .                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | epth (end) :<br>2L Present : Y / N                |
|                                                  |                                                                                  |                                                             |                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | thickness)                                        |
| Samp                                             | ling                                                                             |                                                             |                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
| Sam                                              |                                                                                  | 14/3/22                                                     |                                                  | Per                                             | formed By :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SYB                                                            |                      | Well Diar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | meter: Somm                                       |
| Sar                                              |                                                                                  | peri pi                                                     |                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                      | ~ ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |
|                                                  | Time Started :<br>Time Stopped :                                                 | 09:27                                                       | 6                                                |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Samp<br>S                                                      | WL (start)           | 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 92.                                               |
|                                                  | Tubing Type :                                                                    |                                                             |                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                      | 2.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                   |
|                                                  | Comments :                                                                       |                                                             |                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
|                                                  |                                                                                  |                                                             |                                                  |                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
|                                                  | Duplicate Sam                                                                    | ple Collected?                                              | YN                                               |                                                 | Duplicate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Sample ID :                                                    |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                   |
| Field Ar                                         | alyses                                                                           | •                                                           | YN                                               | Tamp                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                |                      | SWI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                   |
| Field Ar                                         | •                                                                                | EC<br>(uS/cm)                                               | РН                                               | Temp<br>(C)                                     | Duplicate<br>Redox<br>(mV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                | d Oxygen<br>(mg/L)   | SWL<br>(m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Comments (colour, turbidity<br>odours, sheen etc) |
| Time                                             | Volume<br>Removed (L)                                                            | EC<br>(uS/cm)                                               | 7.22                                             | (C)<br>23.6                                     | Redox<br>(mV)<br>-7777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dissolver<br>(ppm)<br>0.85                                     | d Oxygen             | (m)<br>2.793                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | odours, sheen etc)                                |
|                                                  | Volume<br>Removed (L)                                                            | EC                                                          | Y №<br>рн<br>7.22<br>7.25<br>7.25                | (C)<br>23.6<br>23.3                             | Redox<br>(mV)<br>-7777<br>-105.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dissolved<br>(ppm)<br>0.85<br>0.34                             | d Oxygen             | (m)<br>2.793<br>2.892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | odours, sheen etc)                                |
| Time                                             | Volume<br>Removed (L)                                                            | EC<br>(uS/cm)                                               | 7.22                                             | (C)<br>23.6                                     | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>1:35<br>1:38             | Volume<br>Removed (L)                                                            | EC<br>(uS/cm)<br>680<br>684<br>684                          | 7.22<br>7.25<br>7.23<br>7.29                     | (C)<br>23.6<br>23.3<br>23.2                     | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26                     | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>9:35<br>9:35<br>9:35     | Volume<br>Removed (L)                                                            | EC<br>(US/cm)<br>680<br>684<br>679<br>675                   | 7.22<br>7.25<br>7.23<br>7.29                     | (C)<br>23.6<br>23.3<br>23.2<br>B.3              | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>9:35<br>9:35<br>9:35     | Volume<br>Removed (L)                                                            | EC<br>(US/cm)<br>680<br>684<br>679<br>675                   | 7.22<br>7.25<br>7.23<br>7.29                     | (C)<br>23.6<br>23.3<br>23.2<br>B.3              | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>1:35<br>1:35             | Volume<br>Removed (L)                                                            | EC<br>(US/cm)<br>680<br>684<br>679<br>675                   | 7.22<br>7.25<br>7.23<br>7.29                     | (C)<br>23.6<br>23.3<br>23.2<br>B.3              | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>1:35<br>1:35             | Volume<br>Removed (L)                                                            | EC<br>(US/cm)<br>680<br>684<br>679<br>675                   | 7.22<br>7.25<br>7.23<br>7.29                     | (C)<br>23.6<br>23.3<br>23.2<br>B.3              | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>1:35<br>1:35             | Volume<br>Removed (L)                                                            | EC<br>(US/cm)<br>680<br>684<br>679<br>675                   | 7.22<br>7.25<br>7.23<br>7.29                     | (C)<br>23.6<br>23.3<br>23.2<br>B.3              | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>1:35<br>1:35             | Volume<br>Removed (L)                                                            | EC<br>(US/cm)<br>680<br>684<br>679<br>675                   | 7.22<br>7.25<br>7.23<br>7.29                     | (C)<br>23.6<br>23.3<br>23.2<br>B.3              | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>1:35<br>1:35             | Volume<br>Removed (L)                                                            | EC<br>(US/cm)<br>680<br>684<br>679<br>675                   | 7.22<br>7.25<br>7.23<br>7.29                     | (C)<br>23.6<br>23.3<br>23.2<br>B.3              | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>1:35<br>1:35<br>1:35     | Volume<br>Removed (L)                                                            | EC<br>(US/cm)<br>680<br>684<br>679<br>675                   | 7.22<br>7.25<br>7.23<br>7.29                     | (C)<br>23.6<br>23.3<br>23.2<br>B.3              | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>1:35<br>1:35<br>1:35     | Volume<br>Removed (L)                                                            | EC<br>(US/cm)<br>680<br>684<br>679<br>675                   | 7.22<br>7.25<br>7.23<br>7.29                     | (C)<br>23.6<br>23.3<br>23.2<br>B.3              | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>9:35                     | Volume<br>Removed (L)                                                            | EC<br>(US/cm)<br>680<br>684<br>679<br>675                   | 7.22<br>7.25<br>7.23<br>7.29                     | (C)<br>23.6<br>23.3<br>23.2<br>B.3              | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>1:35<br>1:35<br>1:35     | Volume<br>Removed (L)                                                            | EC<br>(US/cm)<br>680<br>684<br>679<br>675                   | 7.22<br>7.25<br>7.23<br>7.29                     | (C)<br>23.6<br>23.3<br>23.2<br>B.3              | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>1:35<br>1:38<br>1:41     | alyses<br>Volume<br>Removed (L)<br>0 - 1<br>0 - 4<br>0 - 9<br>1 - 3<br>1 - 8<br> | EC<br>(US/cm)<br>680<br>684<br>679<br>675                   | 7.22<br>7.25<br>7.23<br>7.29                     | (C)<br>23.6<br>23.3<br>23.2<br>B.3              | Redox<br>(mV)<br>~7777<br>~105.0<br>-112.5<br>~117.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen             | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time                                             | alyses<br>Volume<br>Removed (L)<br>0 - 1<br>0 - 4<br>0 - 9<br>1 - 3<br>1 - 8<br> | EC<br>(US/cm)<br>680<br>684<br>679<br>675<br>675            | 7.22<br>7.25<br>7.23<br>7.29<br>7.24             | (C)<br>23.6<br>23.3<br>23.2<br>B.3              | Redox<br>(mV)<br>-7777<br>-105.0<br>-112.5<br>-117.2<br>-117.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24             | d Oxygen<br>(mg/L)   | (m)<br>2.793<br>2.892<br>2.792<br>2.792<br>2.799                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | odours, sheen etc)                                |
| Time<br>1:29<br>1:32<br>1:35<br>1:38<br>1:41<br> | alyses<br>Volume<br>Removed (L)<br>O · 1<br>O · 4<br>O · 9<br>1 · 3<br>1 · 8<br> | EC<br>(US/cm)<br>680<br>684<br>679<br>675<br>675<br>675<br> | 7.22<br>7.25<br>7.23<br>7.29<br>7.24<br>7.24<br> | (C)<br>23.6<br>23.3<br>23.2<br>23.2<br>23.2<br> | Redox<br>(mV)<br>-777-7<br>-105.0<br>-117.25<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117 | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.24<br>0.24<br>0.24<br> | d Oxygen<br>(mg/L)   | (m)<br>2.793<br>2.892<br>2.392<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.399<br>2.39 | odours, sheen etc)                                |
| Time                                             | alyses<br>Volume<br>Removed (L)<br>O · 1<br>O · 4<br>O · 9<br>1 · 3<br>1 · 8<br> | EC<br>(US/cm)<br>680<br>684<br>679<br>675<br>675<br>675<br> | 7.22<br>7.25<br>7.23<br>7.29<br>7.24<br>7.24     | (C)<br>23.6<br>23.3<br>23.2<br>23.2<br>23.2     | Redox<br>(mV)<br>-777-7<br>-105.0<br>-112.5<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117.2<br>-117. | Dissolver<br>(ppm)<br>0.85<br>0.34<br>0.26<br>0.24<br>0.24     | d Oxygen<br>(mg/L)   | (m)<br>2.793<br>2.892<br>2.392<br>2.799<br>2.799<br>2.749<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   |

| Project Name:         Upper/L         Employee Reserve and the manual end of th | WELL                             | DEVELOP                                                                                | MENT, GA<br>G DATA SI              |                              | ND                   | WE                                   | LL No :     | MB                            |                                             | PR                                                                     |            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------|------------------------------------|------------------------------|----------------------|--------------------------------------|-------------|-------------------------------|---------------------------------------------|------------------------------------------------------------------------|------------|
| Date:         14         3/22         Performed By:         SV(5)           Gauging Method:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Project No                       | P0345                                                                                  | 21                                 | Pro                          | ject Name :          | Vo                                   | pak         | G                             | ME                                          | GRESSIVE RISK                                                          | MANAGEMENT |
| Gauging Method:       1000         Time:       1000         Structure       UP and the structure         Maintainance required:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Gau                              | ging                                                                                   |                                    |                              |                      |                                      | ·           | 4                             |                                             |                                                                        |            |
| Date:         Performed By:         Well Diameter :           Purge Method:         Time Starded:         SWL (start):         Malume Removed :         Bore Depth (start):           Time Starded:         SWL (end):         Discharge Rate:         Bore Depth (start):         Bore Depth (start):           Comments:         SWL (end):         Discharge Rate:         Bore Depth (start):         Bore Depth (start):           Sampling         Date:         14/3/22         Performed By:         SYR         Well Diameter:         Sprprogram           Sampling Method:         performed By:         SYR         Well Diameter:         Sprprogram           Time Started:         (p:1)         Sampling Depth:         S         SWL (end):         3.775           Comments:         Duplicate Sample Collected?         Y (f)         Duplicate Sample ID:         -           Field Analyses         EG         pri trait         T.52         2.0, 2         PO: 1         PO: 1           IO::::::::::::::::::::::::::::::::::::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Maintai                          | auging Method :<br>Time :<br>SWL :<br>Comments :<br>nance required :<br>Photo Number : | 1P<br>10:05<br>3 776               |                              |                      | Bore Depth :                         | 7.10        | 2                             | Wel<br>LNAF<br>(If yes,<br>DNAF<br>(If yes, | PL Present : Y /<br>thickness) :<br>PL Present : Y /<br>thickness) : - | 6          |
| Purge Method:       Value Removed:       Bore Depth (start):         Time Starbed:       SWL (start):       Discharge Rate:       Bore Depth (start):         Comments:       Iteration Starbed:       Discharge Rate:       Bore Depth (start):         Sampling       Date:       14/3/2.2       Performed By:       SYB       Well Diameter:       Sprprn         Sampling Method:       perf.       Sampling Depth:       S       Startpling Method:       Startpling Method:       SWL (start):       Startpling Method:       Symproximation Symproximati                                                                                                                                                                                                                                                                                                     | Purging / D                      |                                                                                        |                                    |                              | Per                  | formed By :                          |             |                               | Well Diar                                   | neter :                                                                |            |
| Date:         14/3/22         Performed By:         STB         Well Diameter:         Drynn           Sampling Method:         perf.         purtup         Sampling Depth:         S           Time States:         jo:         24         Sampling Depth:         S           Time States:         jo:         24         SWL (start):         3.776           Tubing Type:         jo:         performed By:         SWL (end):         3.778           Duplicate Sample Collected?         Y (10)         Duplicate Sample ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  | Purge Method :<br>Time Started :<br>Time Stopped :                                     |                                    |                              |                      | Volume                               | Removed :   |                               | Bore De<br>Bore D                           | epth (start) :<br>epth (end) :<br>*L Present : Y /                     | N          |
| Sampling Method:       Definition         Time Started:       Definition         Time Started:       Definition         Tubing Type:       Definition         Duplicate Sample Collected?       Y (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sam                              | pling                                                                                  |                                    |                              |                      |                                      | -           | Contraction of the local data |                                             |                                                                        |            |
| Field Analyses         Temp         Redox         Dissolved Drygen         SWL         Comments (colour, turbidity, odors, sheen etc)           10:15         0:1         3.86         7.58         21.6         7802.0         537         3.733         cdors, sheen etc)           10:16         0:3         7717         7.52         21.2         -102.14         0.537         3.733         cdors, sheen etc)           10:19         0:4         0:3         7717         7.52         21.2         -102.14         0.35         3.775           10:25         1.4         756         7.50         21.2         -116.9         0.32         3.776           10:25         1.4         756         7.50         21.2         -117.2         0.32         3.776           10:25         1.4         756         7.50         21.2         -116.9         0.32         3.776           10:25         1.4         756         7.50         21.2         -117.2         0.32         3.776           10:25         1.4         7.50         21.2         -116.9         0.35         3.775           10:25         1.9         1.9         1.9         1.9         1.9         1.9         1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sa                               | mpling Method :<br>Time Started :<br>Time Stopped :<br>Tubing Type :                   | peri p<br>10:11<br>10:29<br>20PE   |                              | Per                  | formed By :                          | Samp        | ling Depth :                  | 5                                           |                                                                        | C.M.C.     |
| Time         Volume<br>(usicm)         EC<br>(usicm)         pH<br>(C)         Temp<br>(C)         Redox<br>(pPm)         Dissived 0xgen<br>(m)L         SWL<br>(m)         Comments (colour, turbitily,<br>odours, sheen etc)           10:13         0·1         3.8.6         7·5.8         21.6         -90.2         0.87         3.773         2.733         2.0047           10:16         0·3         777         7.52         21.2         -110.4         0·38         3.773         2.775           10:25         1.4         7.57         7.52         21.2         -116.9         0.32         3.773           10:25         1.4         7.56         7.50         21.2         -112.9         0.32         3.773           10:25         1.4         7.56         7.50         21.2         -112.9         0.32         3.776           10:25         1.4         7.56         7.50         21.2         -112.9         0.32         3.776           10:25         1.4         7.56         7.50         21.2         -112.9         0.32         3.776           10:25         1.4         7.50         21.2         -112.9         0.32         3.776           10:25         1.9         1.9         1.9 <t< td=""><td></td><td>Duplicate Sam</td><td>ple Collected?</td><td>ΥØ</td><td></td><td>Duplicate</td><td>Sample ID :</td><td>-</td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                  | Duplicate Sam                                                                          | ple Collected?                     | ΥØ                           |                      | Duplicate                            | Sample ID : | -                             |                                             |                                                                        |            |
| Time         Volume<br>(usicm)         EC<br>(usicm)         pH<br>(C)         Temp<br>(C)         Redox<br>(mV)         Dissolved 0xgan<br>(pm)         SWL<br>(m)         Comments (colour, turbitily,<br>odours, sheen etc)           10:15         0·1         3.8.6         7·5.8         21.6         -90.2         0.87         3.773         Alour           10:16         0·3         7.77         7.52         21.2         -10.4         0.38         3.773           10:25         1.4         7.57         7.52         21.2         -116.9         0.32         3.775           10:25         1.4         7.56         7.50         21.2         -116.9         0.32         3.773           10:25         1.4         7.56         7.50         21.2         -116.9         0.32         3.776           10:25         1.4         7.56         7.50         21.2         -116.9         0.32         3.776           10:25         1.4         7.56         7.50         21.2         -1172         0.32         3.773           10:25         1.4         7.50         21.2         -1172         0.32         3.776           10:25         1.4         7.50         21.2         -1172         0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Field A                          | nalvses                                                                                |                                    |                              |                      |                                      |             | 1                             |                                             |                                                                        |            |
| IO: I.G       O.3       TTTT       TS2       Q.2       IO: I.H       S.TTTS       OD: I.H         IO: I.Q       O.S       TTTT       TS2       Q.2       -10.0       H       O.3       TTTS       Q.2       Q.2       Provember 2000       Restarding 2000       Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time                             |                                                                                        | DA BALLA                           | pH                           |                      |                                      |             |                               | 100000                                      |                                                                        |            |
| Well Volume Calculations           Casing Diameter         25mm         50mm         100mm         125mm         200mm         250mm         300mm           Conversion Factor         0.98         1.96         7.85         31.4         49.1         70.7         125.7         196.3           TOTAL WELL DEPTH ( - ) WATER LEVEL ( = ) WATER COLUMN         Value         Value <th< td=""><td>10:16<br/>10:19<br/>10:22<br/>10:25</td><td></td><td>777</td><td>7.52<br/>7.52<br/>7.52<br/>7.50</td><td>21.2<br/>21.2<br/>21.2</td><td>-102.4<br/>-110.4<br/>-116.9<br/>-116.9</td><td>084</td><td></td><td>3.773</td><td>1 /</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 10:16<br>10:19<br>10:22<br>10:25 |                                                                                        | 777                                | 7.52<br>7.52<br>7.52<br>7.50 | 21.2<br>21.2<br>21.2 | -102.4<br>-110.4<br>-116.9<br>-116.9 | 084         |                               | 3.773                                       | 1 /                                                                    |            |
| Casing Diameter         25mm         50mm         100mm         125mm         150mm         200mm         250mm         300mm           Conversion Factor         0.98         1.96         7.85         31.4         49.1         70.7         125.7         196.3           TOTAL WELL DEPTH ( - ) WATER LEVEL ( = ) WATER COLUMN         VATER COLUMN <td>Stabilisation Cri</td> <td>teria</td> <td>+/- 3%</td> <td>+/- 0.05</td> <td></td> <td>+/- 10mV</td> <td>+/-</td> <td>10%</td> <td>1215</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Stabilisation Cri                | teria                                                                                  | +/- 3%                             | +/- 0.05                     |                      | +/- 10mV                             | +/-         | 10%                           | 1215                                        |                                                                        |            |
| WATER COLUMN ( X ) CONVERSION FACTOR ( = ) LITRES PER WELL VOLUME<br>( X ) ( = ) L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Casing Diamete<br>Conversion Fa  | er<br>actor<br>DEPTH ( - ) W<br>m ( - )                                                | 0.98<br>ATER LEVEL (<br>WATER COLL | 1.96<br>=) WATER<br>(=)      | 7.85<br>COLUMN       | 31.4                                 | 49.1        | 70.7                          | 125.7<br>VELL VOLU                          | 196.3                                                                  |            |

|                                       | :P0345                                                                                                  | 21                                            | Pro                                          | ject Name :                                  | Vof                                                 | pak               |                    | PRC                                                         | GRESSIVE RISK MANAGE                                                                        |
|---------------------------------------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|----------------------------------------------|-----------------------------------------------------|-------------------|--------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------|
| Gai                                   | uging                                                                                                   |                                               |                                              |                                              |                                                     |                   |                    |                                                             |                                                                                             |
| c                                     | auging Method :<br>Time :                                                                               | 11:33<br>3.843                                | 2                                            |                                              | Per<br>Bore Depth :<br>to LNAPL :                   |                   |                    | Well<br>LNAF<br>(If yes,<br>DNAF                            | Diameter : Somm<br>PL Present : Y / N<br>thickness) :<br>PL Present : Y / N<br>thickness) : |
| Mainta                                | inance required :<br>Photo Number :                                                                     |                                               |                                              |                                              |                                                     |                   | Visual co          |                                                             | vith bailer : Y / 1                                                                         |
| Purging / [                           | Development<br>Date :                                                                                   |                                               |                                              | Per                                          | formed By :                                         |                   |                    | Well Dian                                                   | neter :                                                                                     |
|                                       | Purge Method :<br>Time Started :<br>Time Stopped :<br>Comments :                                        |                                               | SWL (start)<br>SWL (end)                     |                                              |                                                     | Removed :         |                    | Bore D                                                      | epth (start) :<br>epth (end) :<br>PL Present : Y / N<br>thickness) :                        |
|                                       | Date :<br>Date :<br>ampling Method :<br>Time Started :<br>Time Stopped :<br>Tubing Type :<br>Comments : | II:39.                                        | 22<br>Dump                                   | Per                                          | formed By :                                         | Samp              | oling Depth        | Well Dian<br>5 m k<br>3 · 84                                | STOC                                                                                        |
| Field                                 | Duplicate San                                                                                           | nple Collected?                               | YN                                           |                                              | Duplicate                                           | Sample ID :       |                    |                                                             |                                                                                             |
| Time                                  | Volume<br>Removed (L)                                                                                   | EC<br>(uS/cm)                                 | рН                                           | Temp<br>(C)                                  | Redox<br>(mV)                                       | Dissolve<br>(ppm) | d Oxygen<br>(mg/L) | SWL<br>(m)                                                  | Comments (colour, turbidity,<br>odours, sheen etc)                                          |
| 1:41<br>1:44<br>1:50<br>1:53<br>11:56 | 0.1                                                                                                     | 1,100<br>1081<br>1071<br>1095<br>1106<br>1108 | 6.74<br>6.66<br>6.62<br>6.45<br>6.41<br>6.42 | 23.5<br>23.2<br>23.0<br>23.1<br>23.1<br>23.1 | -74.2<br>-90.2<br>-95.9<br>-95.7<br>-96.9<br>-9.5.8 | 0.96              |                    | 3.844<br>3.847<br>3.847<br>3.847<br>3.846<br>3.846<br>3.847 | odovív                                                                                      |
| Stabilisation C                       | riteria                                                                                                 | +/- 3%                                        | +/- 0.05                                     |                                              | +/- 10mV                                            | +/-               | 10%                |                                                             |                                                                                             |

|                                   | P0345                              | 521                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Pro                          | ject Name :                  | Voi                                                                                    | Jak         |                              | PRC                              | OGRESSIVE RISK MANA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------|----------------------------------------------------------------------------------------|-------------|------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Gau                               | ıging                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                              |                                                                                        |             |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0                                 | : Date<br>auging Method            | 14/3/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                            |                              | Per                                                                                    | formed By : | 57B                          | \\/o                             | I Diameter : SOMM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| G                                 |                                    | 10:46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | B                            | lore Depth :                                                                           | 6.163       | 2                            |                                  | PL Present : Y / N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                   | SWL :                              | 3.503                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              | Depth                        | to LNAPL :                                                                             | 0.0-        |                              |                                  | thickness):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                   | Comments :                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                              |                                                                                        |             |                              |                                  | PL Present : Y / N<br>thickness) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Maintai                           | nance required :                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                              |                                                                                        |             | Visual cor                   | - 12 250 YS                      | vith bailer : Y / N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   | Photo Number :                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                              |                                                                                        |             |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| irging / D                        | evelopment                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                              |                                                                                        |             |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | Date :                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              | Per                          | formed By :                                                                            |             |                              | Well Diar                        | meter :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                   | Purge Method :<br>Time Started :   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SWL (start)                  |                              | Volume                                                                                 | Removed :   |                              | Bore De                          | epth (start) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                   | Time Stopped :                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SWL (end) :                  |                              |                                                                                        | arge Rate ; |                              |                                  | epth (end) :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                   | Comments :                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                              |                                                                                        |             |                              |                                  | PL Present: Y / N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                   |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                              |                                                                                        |             |                              | (If yes,                         | thickness).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sam                               | pling                              | 111-1-1-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2                            |                              | formered Dec                                                                           | 250         |                              | Mall Di                          | meter : Somm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sa                                | : Date<br>: mpling Method          | 14/3/2<br>Peri i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oump.                        | Per                          | formed By :                                                                            | SYR         | )                            | Well Diar                        | neter: Shuth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                   | ampling Method :<br>Time Started : | 10:53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Jun 1                        |                              |                                                                                        | Samp        | ling Depth :                 | 5                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | Time Stopped :<br>Tubing Type :    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                              |                                                                                        | S           | SWL (start) :<br>SWL (end) : | 350                              | S Contraction of the second se |
|                                   | Comments :                         | and the second se |                              |                              |                                                                                        |             |                              | 500                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | Dunlicate Sam                      | ple Collected?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | YN                           |                              | Duplicate                                                                              | Sample ID : | s 7 <u>22</u>                |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | Duplicate Sali                     | iple collected?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                              | Duplicate                                                                              | Sample ID . |                              |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Field A                           | nalyses                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                              |                                                                                        | Dissolut    | d Oxygen                     | CINI                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time                              | Volume<br>Removed (L)              | EC<br>(uS/cm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pН                           | Temp<br>(C)                  | Redox<br>(mV)                                                                          | (ppm)       | (mg/L)                       | SWL<br>(m)                       | Comments (colour, turbidity,<br>odours, sheen etc)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| and the second state              |                                    | 1813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.65                         | 22.2                         | -98.3                                                                                  | 1.02        |                              | 3.509                            | Clear, no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1                                 | 0.1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 60                         | 1220                         | -1222                                                                                  | 0.37        |                              | 2.000                            | adaur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1                                 | 0.3                                | 1813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.08                         | 22.0                         | -122.3                                                                                 | 0.32        |                              | 3:509                            | odour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 58<br>01<br>04                    | 0.3                                | 1813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.71                         | 22.1                         | -131.3                                                                                 | 0.33        |                              | 3.508                            | odour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 58<br>01<br>04<br>07              | 0.3                                | 1813<br>1812<br>1810<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.71<br>6.80<br>6.82         | 22.1<br>22.2<br>22.0         | -131.3<br>-129.5                                                                       | 033         |                              | 3.508                            | odour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 58<br>01<br>04<br>07              | 0.3                                | 1813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.71                         | 22.1<br>22.2<br>22.0         | -131.3                                                                                 | 033         |                              | 3.508                            | odour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 58<br>01<br>04<br>07              | 0.3                                | 1813<br>1812<br>1810<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.71<br>6.80<br>6.82         | 22.1<br>22.2<br>22.0         | -131.3<br>-129.5                                                                       | 033         |                              | 3.508                            | odour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 58<br>01<br>04<br>07              | 0.3                                | 1813<br>1812<br>1810<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.71<br>6.80<br>6.82         | 22.1<br>22.2<br>22.0         | -131.3<br>-129.5                                                                       | 033         |                              | 3.508                            | odour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 58<br>01<br>04<br>07              | 0.3                                | 1813<br>1812<br>1810<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.71<br>6.80<br>6.82         | 22.1<br>22.2<br>22.0         | -131.3<br>-129.5                                                                       | 033         |                              | 3.508                            | odour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 58<br>01<br>04<br>07              | 0.3                                | 1813<br>1812<br>1810<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.71<br>6.80<br>6.82         | 22.1<br>22.2<br>22.0         | -131.3<br>-129.5                                                                       | 033         |                              | 3.508                            | odour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 58<br>01<br>04<br>07              | 0.3                                | 1813<br>1812<br>1810<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.71<br>6.80<br>6.82         | 22.1<br>22.2<br>22.0         | -131.3<br>-129.5                                                                       | 033         |                              | 3.508                            | odour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 58<br>01<br>04<br>07              | 0.3                                | 1813<br>1812<br>1810<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.71<br>6.80<br>6.82         | 22.1<br>22.2<br>22.0         | -131.3<br>-129.5                                                                       | 033         |                              | 3.508                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58<br>01<br>04<br>07              | 0.3                                | 1813<br>1812<br>1810<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.71<br>6.80<br>6.82         | 22.1<br>22.2<br>22.0         | -131.3<br>-129.5                                                                       | 033         |                              | 3.508                            | odour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 58<br>01<br>04<br>07              | 0.3                                | 1813<br>1812<br>1810<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.71<br>6.80<br>6.82         | 22.1<br>22.2<br>22.0         | -131.3<br>-129.5                                                                       | 033         |                              | 3.508                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58<br>01<br>04<br>07              | 0.3                                | 1813<br>1812<br>1810<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.71<br>6.80<br>6.82         | 22.1<br>22.2<br>22.0         | -131.3<br>-129.5                                                                       | 033         |                              | 3.508                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 55<br>58<br>01<br>04<br>07<br>10  |                                    | 1813<br>1812<br>1810<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 6.71<br>6.80<br>6.82         | 22.1<br>22.2<br>22.0         | -131.3<br>-129.5                                                                       | 033         | 10%                          | 3.508                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58<br>04<br>07<br>10              | 0.3<br>6.8<br>1.1<br>1.5<br>2.0    | 1813<br>1812<br>1810<br>1798<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.71<br>6.80<br>6.82<br>6.83 | 22.1<br>22.2<br>22.0         | -13)-3<br>-1295<br>-138-2<br>-136-4                                                    | 033         | 10%                          | 3.508                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58<br>04<br>07<br>10              | 0.3<br>6.8<br>1.1<br>2.0           | 1813<br>1812<br>1810<br>1798<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.71<br>6.80<br>6.82<br>6.83 | 22.1<br>22.2<br>22.0         | -13)-3<br>-1295<br>-138-2<br>-136-4                                                    | 033         | 200mm                        | 3.508                            | 300mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| SB<br>OH<br>OH<br>IO<br>sation Cr | 0.3<br>6.8<br>1.1<br>1.5<br>2.0    | 1813<br>1812<br>1810<br>1798<br>1798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.71                         | 22.)<br>22.2<br>22.0<br>22.1 | -13)-3<br>-129:5<br>-138:2<br>-136:4<br>-136:4<br>-136:4<br>-136:4<br>-136:4<br>-136:4 | 033         |                              | 3.508<br>3.509<br>3.511<br>3.509 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



# **Appendix B: Equipment Calibration Certificates**

Instrument Serial No.





| Item          | Test                    | Pass         | Comments |
|---------------|-------------------------|--------------|----------|
| Battery       | Charge Condition        | $\checkmark$ |          |
|               | Fuses                   | 1            |          |
|               | Capacity                | 1            |          |
| Switch/keypad | Operation               | 1            |          |
| Display       | Intensity               | 1            |          |
|               | Operation<br>(segments) | $\checkmark$ |          |
| Grill Filter  | Condition               | 1            |          |
|               | Seal                    | 1            |          |
| PCB           | Condition               | 1            |          |
| Connectors    | Condition               | 1            |          |
| Sensor        | 1. pH                   | 1            |          |
|               | 2. mV                   | 1            |          |
|               | 3. EC                   | 1            |          |
|               | 4. D.O                  | 1            |          |
|               | 5. Temp                 | 1            |          |
| Alarms        | Beeper                  |              |          |
|               | Settings                |              |          |
| Software      | Version                 |              |          |
| Data logger   | Operation               |              |          |
| Download      | Operation               |              |          |
| Other tests:  | and the second          |              |          |

## Certificate of Calibration

This is to certify that the above instrument has been calibrated to the following specifications:

| Sensor      | Serial no | Standard Solutions | Certified | Solution Bottle<br>Number | Instrument Reading |
|-------------|-----------|--------------------|-----------|---------------------------|--------------------|
| 1. PH 10.00 |           | PH1 10.00          |           | 380833                    | pH 9.70            |
| 2. pH 7.00  |           | pH 7.00            |           | 377339                    | pH 6.99            |
| 3. pH 4.00  |           | pH 4.00            |           | 380327                    | pH 4.08            |
| 4. mV       |           | 231.8 mV           |           | 365451/374424             | 237.1mV            |
| 5. EC       |           | 2.76mS             |           | 377099                    | 2.75mS             |
| 6. D.O      |           | 0.00 ppm           |           | 371864                    | 0.00ppm            |
| 7. Temp     |           | 20.8°C             |           | MultiTherm                | 21.2°C             |

Calibrated by:

Sarah Lian

Calibration date:

Next calibration due:

9/09/2022

10/03/2022



Appendix C: NATA Laboratory Results, COCs and Sample Receipts



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

#### **CERTIFICATE OF ANALYSIS 290899**

| Client Details |                                         |
|----------------|-----------------------------------------|
| Client         | Progressive Risk Management Pty Ltd     |
| Attention      | Sarah Bolton                            |
| Address        | 14/76 Reserve Road, ARTARMON, NSW, 2064 |

| Sample Details                       |                |
|--------------------------------------|----------------|
| Your Reference                       | <u>P034521</u> |
| Number of Samples                    | 9 Water        |
| Date samples received                | 14/03/2022     |
| Date completed instructions received | 14/03/2022     |

#### **Analysis Details**

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

| Report Details                                                                                       |            |  |  |  |
|------------------------------------------------------------------------------------------------------|------------|--|--|--|
| Date results requested by                                                                            | 21/03/2022 |  |  |  |
| Date of Issue                                                                                        | 18/03/2022 |  |  |  |
| NATA Accreditation Number 2901. This document shall not be reproduced except in full.                |            |  |  |  |
| Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with * |            |  |  |  |

Results Approved By Dragana Tomas, Senior Chemist Josh Williams, LC Supervisor Kyle Gavrily, Chemist Authorised By

Nancy Zhang, Laboratory Manager



#### Client Reference: P034521

| Dur Reterence29089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029089-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-029080-0<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |       |            |            |            |            |            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------|------------|------------|------------|------------|------------|
| NumberNUTSNB01MB02MB03MB04MB05Date Sampled14/03/202214/03/202214/03/202214/03/202214/03/202214/03/2022Date extracted-15/03/202215/03/202215/03/202215/03/202215/03/202215/03/2022Date extracted-15/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/2022TRH Ca, Ca,µµl<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10 </th <th>vTRH(C6-C10)/BTEXN in Water Our Reference</th> <th></th> <th>290899-1</th> <th>290899-2</th> <th>290899-3</th> <th>290899-4</th> <th>290899-5</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vTRH(C6-C10)/BTEXN in Water Our Reference           |       | 290899-1   | 290899-2   | 290899-3   | 290899-4   | 290899-5   |
| Data SampledIt4/03/2022It4/03/2022It4/03/2022It4/03/2022It4/03/2022It4/03/2022It4/03/2022It4/03/2022It4/03/2022It4/03/2022It4/03/2022It4/03/2022It4/03/2022It4/03/2022It4/03/2022It4/03/2022It4/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/2022It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03/202It5/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Your Reference                                      | UNITS |            |            |            |            |            |
| Type of sampleWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWaterWater15/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |       |            |            |            |            | 14/03/2022 |
| Date extracted15/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/202215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/20215/03/202 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |       |            |            |            |            |            |
| Date analysed-1503/2021503/20221503/20221503/20221503/2022TRH Co-CoµµL<10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     | -     |            |            |            |            |            |
| TRH C <sub>6</sub> - C <sub>6</sub> μφL<10<10<10<10<10<10TRH C <sub>4</sub> - C <sub>10</sub> μφL<10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | -     |            |            |            |            |            |
| TRH Ca - Cioμg/L<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11<11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                     | μg/L  |            |            |            |            |            |
| RH Ca - Croitess BTEX (F1)μμL<1<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10<10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     | μg/L  | <10        | <10        | <10        | <10        | <10        |
| Benzeneµµl<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |       | <10        | <10        | <10        | <10        |            |
| TolueneIµµLI<1I<1I<1I<1I<1I<1EthylbenzeneIµµLI<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Benzene                                             |       | <1         | <1         | <1         |            | <1         |
| Ethylbenzeneμθμ<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1<1 <td>Toluene</td> <td></td> <td></td> <td>&lt;1</td> <td>&lt;1</td> <td>&lt;1</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Toluene                                             |       |            | <1         | <1         | <1         |            |
| h+p-xyleneμg/L<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2<2 <td>Ethylbenzene</td> <td></td> <td>&lt;1</td> <td>&lt;1</td> <td>&lt;1</td> <td>&lt;1</td> <td>&lt;1</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ethylbenzene                                        |       | <1         | <1         | <1         | <1         | <1         |
| Name         µg/L         <1         <1         <1         <1         <1           Surrogate Dibromofluoromethane         %         99         100         98         98         97           Surrogate Dibromofluoromethane         %         97         98         97         97         98           Surrogate Dibromofluoromethane         %         103         104         102         103         103           Surrogate ABFB         %         103         104         102         103         103           TRR(G6-C10/ETEXN In Water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m+p-xylene                                          | µg/L  | <2         | <2         | <2         | <2         | <2         |
| Naphthalene         µgL         <1         <1         <1         <1         <1           Surrogate Dibromofluoromethane         %         99         100         88         98         97           Surrogate Dibromofluoromethane         %         97         98         97         97         98           Surrogate ABFB         %         103         104         102         103         103           Surrogate ABFB         %         103         104         102         103         103           Surrogate ABFB         %         103         104         102         103         103           Surrogate ABFB         Water         290899-7         290899-8         290899-7         290899-8         290899-7           Vour Reference         UNITS         DUP01         R1         TB         TS           Oate Sampled         14/03/2022         14/03/2022         14/03/2022         14/03/2022         14/03/2022           Oate extracted          15/03/2022         15/03/2022         15/03/2022         15/03/2022           Date extracted                Date extracted                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | o-xylene                                            | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Surrogate toluene-d8         %         97         98         97         97         98           Surrogate 4-BFB         %         103         104         102         103         103           VTR+(C6-C10)/BTEXN in Water         290899-6         290899-7         290899-8         290899-8         290899-9           YOUR Reference         UNITS         DUP01         R1         TB         TS           Date Sampled         14/03/2022         14/03/2022         14/03/2022         14/03/2022           Type of sample         0         15/03/2022         15/03/2022         15/03/2022         15/03/2022           Date extracted         0         15/03/2022         15/03/2022         15/03/2022         15/03/2022           Date analysed         0         15/03/2022         15/03/2022         15/03/2022         15/03/2022           TRH C <sub>0</sub> - C <sub>0</sub> µg/L         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Naphthalene                                         | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Surrogate 4-BFB%103104102103103Surrogate 4-BFB%103103104102103103VTR4(C6-C10)/BTEXN in Water290899-6290899-7290899-8290899-8290899-9Your ReferenceUNITSDUP01R1TBTSDate Sampled14/03/202214/03/202214/03/202214/03/2022Type of sampleWaterWaterWaterWaterDate extracted-15/03/202215/03/202215/03/202215/03/2022Date analysed-15/03/202215/03/202215/03/202215/03/2022TRH C6 - C9µg/L<10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Surrogate Dibromofluoromethane                      | %     | 99         | 100        | 98         | 98         | 97         |
| TRH(G6-C10)/BTEXN in Water         290899-6         290899-7         290899-8         290899-9           Your Reference         UNITS         DUP01         R1         TB         TS           Date Sampled         UNITS         DUP01         R1         TB         TS           Date Sampled         14/03/2022         14/03/2022         14/03/2022         14/03/2022         14/03/2022           Type of sample         Water         Water         Water         Water         Water           Date extracted         -         15/03/2022         15/03/2022         15/03/2022         15/03/2022           Date analysed         -         15/03/2022         15/03/2022         15/03/2022         15/03/2022           TRH C <sub>6</sub> - C <sub>10</sub> µg/L         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Surrogate toluene-d8                                | %     | 97         | 98         | 97         | 97         | 98         |
| Dur Reference290899-6290899-7290899-8290899-9Your ReferenceUNITSDUP01R1TBTSDate Sampled14/03/202214/03/202214/03/202214/03/2022Type of sampleWaterWaterWaterWaterDate extracted-15/03/202215/03/202215/03/2022Date analysed-15/03/202215/03/202215/03/2022TRH C6 - C9µg/L<10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Surrogate 4-BFB                                     | %     | 103        | 104        | 102        | 103        | 103        |
| Dur Reference290899-6290899-7290899-8290899-9Your ReferenceUNITSDUP01R1TBTSDate Sampled14/03/202214/03/202214/03/202214/03/2022Type of sampleWaterWaterWaterWaterDate extracted-15/03/202215/03/202215/03/2022Date analysed-15/03/202215/03/202215/03/2022TRH C6 - C9µg/L<10<10(NA)TRH C6 - C10 less BTEX (F1)µg/L<11<1186%Date analysedµg/L<11<11<11Benzeneµg/L<11<11<11Tolueneµg/L<11<11<11Hyb/L<11<11<11<11Stypeneµg/L<11<11<11Naplehaleneµg/L<11<11<11Naplehalene<19/L<11<11<11Naplehalene<19/L<11<11<11Naplehalene<19/L<11<11<11Naplehalene<19/L<11<11<11Naplehalene<19/L<11<11<11Naplehalene<19/L<11<11<11Naplehalene<19/L<11<11<11Naplehalene<19/L<11<11<11Naplehalene<19/L<11<11<11Naplehalene<19<11<11<11Naplehalene<19<11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | vTRH(C6-C10)/BTEXN in Water                         | 1     |            | 1          |            |            | ·          |
| Date Sampled14/03/202214/03/202214/03/202214/03/2022Type of sampleVaterWaterWaterWaterWaterWaterDate extracted-15/03/202215/03/202215/03/202215/03/2022Date analysed-15/03/202215/03/202215/03/202215/03/2022TRH C6 - CaMg/L<10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Our Reference                                       |       | 290899-6   | 290899-7   | 290899-8   | 290899-9   |            |
| Type of sampleWaterWaterWaterWaterWaterDate extracted-15/03/202215/03/202215/03/202215/03/2022Date analysed-15/03/202215/03/202215/03/202215/03/2022Date analysed15/03/202215/03/2022TRH C6 - C9TRH C6 - C10BenzeneTolueneToluene <td>Your Reference</td> <td>UNITS</td> <td>DUP01</td> <td>R1</td> <td>ТВ</td> <td>TS</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Your Reference                                      | UNITS | DUP01      | R1         | ТВ         | TS         |            |
| Date extracted         15/03/2022         15/03/2022         15/03/2022         15/03/2022           Date analysed         -         15/03/2022         15/03/2022         15/03/2022         15/03/2022           TRH C <sub>6</sub> - C <sub>9</sub> µg/L         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Date Sampled                                        |       | 14/03/2022 | 14/03/2022 | 14/03/2022 | 14/03/2022 |            |
| Date analysed         Image: Marce | Type of sample                                      |       | Water      | Water      | Water      | Water      |            |
| TRH C6 - C9         μg/L         <10         <10         <10         <10           TRH C6 - C10         μg/L         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date extracted                                      | -     | 15/03/2022 | 15/03/2022 | 15/03/2022 | 15/03/2022 |            |
| TRH C6 - C10         μg/L         <10         <10         <10         <10           TRH C6 - C10 less BTEX (F1)         μg/L         <10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Date analysed                                       | -     | 15/03/2022 | 15/03/2022 | 15/03/2022 | 15/03/2022 |            |
| TRH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1)         μg/L         <10         <10         <10         <10           Benzene         μg/L         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TRH C <sub>6</sub> - C <sub>9</sub>                 | µg/L  | <10        | <10        | <10        | [NA]       |            |
| Benzene         µg/L         <1         <1         86%           Toluene         µg/L         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TRH C6 - C10                                        | μg/L  | <10        | <10        | <10        | [NA]       |            |
| Toluene         μg/L         <1         <1         81%           Ethylbenzene         μg/L         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TRH C <sub>6</sub> - C <sub>10</sub> less BTEX (F1) | μg/L  | <10        | <10        | <10        | [NA]       |            |
| Lthylbenzene         μg/L         <1         95%           m+p-xylene         μg/L         <2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Benzene                                             | μg/L  | <1         | <1         | <1         | 86%        |            |
| μg/L         <2         <2         89%           p-xylene         μg/L         <1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Toluene                                             | μg/L  | <1         | <1         | <1         | 81%        |            |
| p-xyleneµg/L<1<190%Naphthaleneµg/L<1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ethylbenzene                                        | µg/L  | <1         | <1         | <1         | 95%        |            |
| Naphthaleneµg/L<1<1[NA]Surrogate Dibromofluoromethane%989998100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m+p-xylene                                          | μg/L  | <2         | <2         | <2         | 89%        |            |
| Surrogate Dibromofluoromethane % 98 99 98 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o-xylene                                            | μg/L  | <1         | <1         | <1         | 90%        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Naphthalene                                         | μg/L  | <1         | <1         | <1         | [NA]       |            |
| Surrogate toluene-d8 % 98 98 97 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Surrogate Dibromofluoromethane                      | %     | 98         | 99         | 98         | 100        |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Surrogate toluene-d8                                | %     | 98         | 98         | 97         | 101        |            |

104

%

103

103

99

Surrogate 4-BFB

| svTRH (C10-C40) in Water               |       |            |            |            |            |            |
|----------------------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference                          |       | 290899-1   | 290899-2   | 290899-3   | 290899-4   | 290899-5   |
| Your Reference                         | UNITS | MB01       | MB02       | MB03       | MB04       | MB05       |
| Date Sampled                           |       | 14/03/2022 | 14/03/2022 | 14/03/2022 | 14/03/2022 | 14/03/2022 |
| Type of sample                         |       | Water      | Water      | Water      | Water      | Water      |
| Date extracted                         | -     | 17/03/2022 | 17/03/2022 | 17/03/2022 | 17/03/2022 | 17/03/2022 |
| Date analysed                          | -     | 18/03/2022 | 18/03/2022 | 18/03/2022 | 18/03/2022 | 18/03/2022 |
| TRH C <sub>10</sub> - C <sub>14</sub>  | µg/L  | <50        | <50        | <50        | <50        | <50        |
| TRH C <sub>15</sub> - C <sub>28</sub>  | µg/L  | <100       | <100       | <100       | <100       | <100       |
| TRH C <sub>29</sub> - C <sub>36</sub>  | µg/L  | <100       | <100       | <100       | <100       | <100       |
| TRH >C <sub>10</sub> - C <sub>16</sub> | µg/L  | <50        | <50        | <50        | <50        | <50        |
| TRH >C10 - C16 less Naphthalene (F2)   | µg/L  | <50        | <50        | <50        | <50        | <50        |
| TRH >C <sub>16</sub> - C <sub>34</sub> | µg/L  | <100       | <100       | <100       | <100       | <100       |
| TRH >C <sub>34</sub> - C <sub>40</sub> | µg/L  | <100       | <100       | <100       | <100       | <100       |
| Surrogate o-Terphenyl                  | %     | 94         | 98         | 90         | 93         | 91         |

| svTRH (C10-C40) in Water                                     |       |            |            |
|--------------------------------------------------------------|-------|------------|------------|
| Our Reference                                                |       | 290899-6   | 290899-7   |
| Your Reference                                               | UNITS | DUP01      | R1         |
| Date Sampled                                                 |       | 14/03/2022 | 14/03/2022 |
| Type of sample                                               |       | Water      | Water      |
| Date extracted                                               | -     | 17/03/2022 | 17/03/2022 |
| Date analysed                                                | -     | 18/03/2022 | 18/03/2022 |
| TRH C <sub>10</sub> - C <sub>14</sub>                        | μg/L  | <50        | <50        |
| TRH C15 - C28                                                | µg/L  | <100       | 160        |
| TRH C <sub>29</sub> - C <sub>36</sub>                        | μg/L  | <100       | <100       |
| TRH >C <sub>10</sub> - C <sub>16</sub>                       | µg/L  | <50        | 160        |
| TRH >C <sub>10</sub> - C <sub>16</sub> less Naphthalene (F2) | μg/L  | <50        | 160        |
| TRH >C <sub>16</sub> - C <sub>34</sub>                       | µg/L  | <100       | <100       |
| TRH >C <sub>34</sub> - C <sub>40</sub>                       | µg/L  | <100       | <100       |
| Surrogate o-Terphenyl                                        | %     | 103        | 92         |

| PAHs in Water             |       |            |            |            |            |            |
|---------------------------|-------|------------|------------|------------|------------|------------|
| Our Reference             |       | 290899-1   | 290899-2   | 290899-3   | 290899-4   | 290899-5   |
| Your Reference            | UNITS | MB01       | MB02       | MB03       | MB04       | MB05       |
| Date Sampled              |       | 14/03/2022 | 14/03/2022 | 14/03/2022 | 14/03/2022 | 14/03/2022 |
| Type of sample            |       | Water      | Water      | Water      | Water      | Water      |
| Date extracted            | -     | 17/03/2022 | 17/03/2022 | 17/03/2022 | 17/03/2022 | 17/03/2022 |
| Date analysed             | -     | 17/03/2022 | 17/03/2022 | 17/03/2022 | 17/03/2022 | 17/03/2022 |
| Naphthalene               | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Acenaphthylene            | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Acenaphthene              | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Fluorene                  | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Phenanthrene              | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Anthracene                | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Fluoranthene              | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Pyrene                    | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Benzo(a)anthracene        | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Chrysene                  | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Benzo(b,j+k)fluoranthene  | µg/L  | <2         | <2         | <2         | <2         | <2         |
| Benzo(a)pyrene            | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Indeno(1,2,3-c,d)pyrene   | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Dibenzo(a,h)anthracene    | µg/L  | <1         | <1         | <1         | <1         | <1         |
| Benzo(g,h,i)perylene      | μg/L  | <1         | <1         | <1         | <1         | <1         |
| Benzo(a)pyrene TEQ        | µg/L  | <5         | <5         | <5         | <5         | <5         |
| Total +ve PAH's           | µg/L  | NIL (+)VE  |
| Surrogate p-Terphenyl-d14 | %     | 127        | 124        | 116        | 114        | 113        |

| PAHs in Water             |       |            |            |
|---------------------------|-------|------------|------------|
| Our Reference             |       | 290899-6   | 290899-7   |
| Your Reference            | UNITS | DUP01      | R1         |
| Date Sampled              |       | 14/03/2022 | 14/03/2022 |
| Type of sample            |       | Water      | Water      |
| Date extracted            | -     | 17/03/2022 | 17/03/2022 |
| Date analysed             | -     | 17/03/2022 | 17/03/2022 |
| Naphthalene               | μg/L  | <1         | <1         |
| Acenaphthylene            | µg/L  | <1         | <1         |
| Acenaphthene              | μg/L  | <1         | <1         |
| Fluorene                  | μg/L  | <1         | <1         |
| Phenanthrene              | μg/L  | <1         | <1         |
| Anthracene                | µg/L  | <1         | <1         |
| Fluoranthene              | µg/L  | <1         | <1         |
| Pyrene                    | μg/L  | <1         | <1         |
| Benzo(a)anthracene        | μg/L  | <1         | <1         |
| Chrysene                  | μg/L  | <1         | <1         |
| Benzo(b,j+k)fluoranthene  | µg/L  | <2         | <2         |
| Benzo(a)pyrene            | μg/L  | <1         | <1         |
| Indeno(1,2,3-c,d)pyrene   | µg/L  | <1         | <1         |
| Dibenzo(a,h)anthracene    | µg/L  | <1         | <1         |
| Benzo(g,h,i)perylene      | μg/L  | <1         | <1         |
| Benzo(a)pyrene TEQ        | µg/L  | <5         | <5         |
| Total +ve PAH's           | μg/L  | NIL (+)VE  | NIL (+)VE  |
| Surrogate p-Terphenyl-d14 | %     | 120        | 113        |

| Method ID   | Methodology Summary                                                                                                                                                                                                                                                                                     |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Org-020     | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.<br>F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis. |
| Org-022/025 | Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-<br>MSMS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013.                                                                         |
| Org-023     | Water samples are analysed directly by purge and trap GC-MS.                                                                                                                                                                                                                                            |
| Org-023     | Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.                                   |

| QUALITY CONT                         | ROL: vTRH( | C6-C10)/E |         | Du         |   | Spike Recovery % |            |     |            |      |
|--------------------------------------|------------|-----------|---------|------------|---|------------------|------------|-----|------------|------|
| Test Description                     | Units      | PQL       | Method  | Blank      | # | Base             | Dup.       | RPD | LCS-W1     | [NT] |
| Date extracted                       | -          |           |         | 15/03/2022 | 1 | 15/03/2022       | 16/03/2022 |     | 15/03/2022 |      |
| Date analysed                        | -          |           |         | 15/03/2022 | 1 | 15/03/2022       | 16/03/2022 |     | 15/03/2022 |      |
| TRH C <sub>6</sub> - C <sub>9</sub>  | μg/L       | 10        | Org-023 | <10        | 1 | <10              | <10        | 0   | 88         |      |
| TRH C <sub>6</sub> - C <sub>10</sub> | μg/L       | 10        | Org-023 | <10        | 1 | <10              | <10        | 0   | 88         |      |
| Benzene                              | μg/L       | 1         | Org-023 | <1         | 1 | <1               | <1         | 0   | 86         |      |
| Toluene                              | μg/L       | 1         | Org-023 | <1         | 1 | <1               | <1         | 0   | 84         |      |
| Ethylbenzene                         | μg/L       | 1         | Org-023 | <1         | 1 | <1               | <1         | 0   | 90         |      |
| m+p-xylene                           | μg/L       | 2         | Org-023 | <2         | 1 | <2               | <2         | 0   | 91         |      |
| o-xylene                             | μg/L       | 1         | Org-023 | <1         | 1 | <1               | <1         | 0   | 88         |      |
| Naphthalene                          | μg/L       | 1         | Org-023 | <1         | 1 | <1               | <1         | 0   | [NT]       |      |
| Surrogate Dibromofluoromethane       | %          |           | Org-023 | 99         | 1 | 99               | 95         | 4   | 102        |      |
| Surrogate toluene-d8                 | %          |           | Org-023 | 98         | 1 | 97               | 97         | 0   | 101        |      |
| Surrogate 4-BFB                      | %          |           | Org-023 | 103        | 1 | 103              | 105        | 2   | 100        |      |

| QUALITY CON                            | TROL: svTF | RH (C10-0 |         | Duj        | olicate |            | Spike Recovery % |     |            |            |
|----------------------------------------|------------|-----------|---------|------------|---------|------------|------------------|-----|------------|------------|
| Test Description                       | Units      | PQL       | Method  | Blank      | #       | Base       | Dup.             | RPD | LCS-W1     | 290899-3   |
| Date extracted                         | -          |           |         | 17/03/2022 | 2       | 17/03/2022 | 17/03/2022       |     | 17/03/2022 | 17/03/2022 |
| Date analysed                          | -          |           |         | 18/03/2022 | 2       | 18/03/2022 | 18/03/2022       |     | 18/03/2022 | 18/03/2022 |
| TRH C <sub>10</sub> - C <sub>14</sub>  | µg/L       | 50        | Org-020 | <50        | 2       | <50        | <50              | 0   | 93         | 77         |
| TRH C <sub>15</sub> - C <sub>28</sub>  | µg/L       | 100       | Org-020 | <100       | 2       | <100       | <100             | 0   | 90         | 81         |
| TRH C <sub>29</sub> - C <sub>36</sub>  | µg/L       | 100       | Org-020 | <100       | 2       | <100       | <100             | 0   | 109        | 92         |
| TRH >C <sub>10</sub> - C <sub>16</sub> | µg/L       | 50        | Org-020 | <50        | 2       | <50        | <50              | 0   | 93         | 77         |
| TRH >C <sub>16</sub> - C <sub>34</sub> | µg/L       | 100       | Org-020 | <100       | 2       | <100       | <100             | 0   | 90         | 81         |
| TRH >C <sub>34</sub> - C <sub>40</sub> | µg/L       | 100       | Org-020 | <100       | 2       | <100       | <100             | 0   | 109        | 92         |
| Surrogate o-Terphenyl                  | %          |           | Org-020 | 124        | 2       | 98         | 95               | 3   | 99         | 86         |

| QUALIT                    | Y CONTROL | .: PAHs ir | n Water             |            |    | Du         | plicate    | Spike Recovery % |            |           |  |
|---------------------------|-----------|------------|---------------------|------------|----|------------|------------|------------------|------------|-----------|--|
| Test Description          | Units     | PQL        | Method              | Blank      | #  | Base       | Dup.       | RPD              | LCS-W1     | [NT]      |  |
| Date extracted            | -         |            |                     | 17/03/2022 | 2  | 17/03/2022 | 17/03/2022 |                  | 17/03/2022 |           |  |
| Date analysed             | -         |            |                     | 17/03/2022 | 2  | 17/03/2022 | 17/03/2022 |                  | 17/03/2022 |           |  |
| Naphthalene               | μg/L      | 1          | Org-022/025         | <1         | 2  | <1         | <1         | 0                | 91         | [NT]      |  |
| Acenaphthylene            | μg/L      | 1          | Org-022/025         | <1         | 2  | <1         | <1         | 0                | [NT]       | [NT] [NT] |  |
| Acenaphthene              | μg/L      | 1          | Org-022/025         | <1         | 2  | <1         | <1         | 0                | 78         | 78 [NT]   |  |
| Fluorene                  | μg/L      | 1          | Org-022/025         | <1         | 2  | <1         | <1         | 0                | 89         | 89 [NT]   |  |
| Phenanthrene              | μg/L      | 1          | Org-022/025         | <1         | 2  | <1         | <1         | 0                | 106        |           |  |
| Anthracene                | μg/L      | 1          | Org-022/025 <1 2 <1 |            | <1 | 0          | [NT]       |                  |            |           |  |
| Fluoranthene              | μg/L      | 1          | Org-022/025 <1 2 <1 |            | <1 | 0          | 83         |                  |            |           |  |
| Pyrene                    | μg/L      | 1          | Org-022/025         | <1         | 2  | <1         | <1         | 0                | 91         |           |  |
| Benzo(a)anthracene        | μg/L      | 1          | Org-022/025         | <1         | 2  | <1         | <1         | 0                | [NT]       |           |  |
| Chrysene                  | μg/L      | 1          | Org-022/025         | <1         | 2  | <1         | <1         | 0                | 71         |           |  |
| Benzo(b,j+k)fluoranthene  | μg/L      | 2          | Org-022/025         | <2         | 2  | <2         | <2         | 0                | [NT]       |           |  |
| Benzo(a)pyrene            | μg/L      | 1          | Org-022/025         | <1         | 2  | <1         | <1         | 0                | 78         |           |  |
| Indeno(1,2,3-c,d)pyrene   | μg/L      | 1          | Org-022/025         | <1         | 2  | <1         | <1         | 0                | [NT]       |           |  |
| Dibenzo(a,h)anthracene    | μg/L      | 1          | Org-022/025         | <1         | 2  | <1         | <1         | 0                | [NT]       |           |  |
| Benzo(g,h,i)perylene      | μg/L      | 1          | Org-022/025         | <1         | 2  | <1         | <1         | 0                | [NT]       |           |  |
| Surrogate p-Terphenyl-d14 | %         |            | Org-022/025         | 122        | 2  | 124        | 125        | 1                | 93         |           |  |

| Result Definiti | ons                                       |  |  |  |  |  |  |
|-----------------|-------------------------------------------|--|--|--|--|--|--|
| NT              | Not tested                                |  |  |  |  |  |  |
| NA              | Test not required                         |  |  |  |  |  |  |
| INS             | sufficient sample for this test           |  |  |  |  |  |  |
| PQL             | Practical Quantitation Limit              |  |  |  |  |  |  |
| <               | Less than                                 |  |  |  |  |  |  |
| >               | Greater than                              |  |  |  |  |  |  |
| RPD             | Relative Percent Difference               |  |  |  |  |  |  |
| LCS             | Laboratory Control Sample                 |  |  |  |  |  |  |
| NS              | Not specified                             |  |  |  |  |  |  |
| NEPM            | National Environmental Protection Measure |  |  |  |  |  |  |
| NR              | Not Reported                              |  |  |  |  |  |  |

| Quality Contro                     | ol Definitions                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Blank                              | BlankThis is the component of the analytical signal which is not derived from the sample but from reagents,<br>glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for<br>samples. |  |  |  |  |  |  |  |
| Duplicate                          | This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.                                                  |  |  |  |  |  |  |  |
| Matrix Spike                       | A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.  |  |  |  |  |  |  |  |
| LCS (Laboratory<br>Control Sample) | This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.                                 |  |  |  |  |  |  |  |
| Surrogate Spike                    | Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.                           |  |  |  |  |  |  |  |

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

# Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

# **Report Comments**

TRH Water(C10-C40) NEPM - The positive result in the rinsate sample is due to a single peak with no hydrocarbon profile that is consistent with the use of plastic containers.



[Copyright and Confidential]

**Client: Progessive Risk Management** 

Address: 14/76 Reserve Road, Artamon

Contact Person: Stuart Dundas

Project Mgr: Stuart Dundas

Sampler: Sarah Bolton

# **CHAIN OF CUSTODY FORM - Client**

PO No.:

Envirolab Quote No. :

Date results required:

surcharges apply

Client Project Name/Number/Site etc (ie report title):

Or choose: standard / same day / 1 day / 2 day / 3 day Note: Inform lab in advance if urgent turnaround is required -

A LINE I ALL IL AND A LANDAL AND A

P034521

STD

**ENVIROLAB GROUP** 

National phone number 1300 424 344

Sydney Lab - Envirolab Services 12 Ashley St. Chatswood, NSW 2067 © 02 9910 6200 |:-< sydney@envirolab.com.au

Perth Lab - MPL Laboratories 16-18 Hayden Crt, Myaree, WA 6154 ☉ 08 9317 2505 ] ≪ lab@mpl.com.au

Melbourne Lab - Envirolab Services 25 Research Drive, Croydon South, VIC 3136 © 03 9763 2500 | 123 melbourne@envirolab.com.au

Adelaide Office - Envirolab Services 7a The Parade, Norwood, SA 5067 ① 08 7087 6800 | 2⊴ adelaide@envirolab.com.au

Brisbane Office - Envirolab Services 20a, 10-20 Depot St, Banyo, QLD 4014 © 07 3266 9532 | ≥⊴ brisbane@envirolab.com.au

Darwin Office - Envirolab Services Unit 20/119 Reichardt Road, Winnellie, NT 0820 Ф 08 8967 1201 | ⊠ darwin@envirolab.com.au

| Phone:                 |                                        | Mob:           | 047             | 79 195 358            |          |               |          | rmat: e | sdat / | equis <i>i</i> | 0 08 8967 1201   23 darwin@envirolab.com.au |         |        |                                       |       | virolab.com.au |                    |          |                                                               |
|------------------------|----------------------------------------|----------------|-----------------|-----------------------|----------|---------------|----------|---------|--------|----------------|---------------------------------------------|---------|--------|---------------------------------------|-------|----------------|--------------------|----------|---------------------------------------------------------------|
| Email:                 | sarah.bolto<br>stuart.dund<br>results@ |                | ssiverm.co      |                       | Lab Co   | Lab Comments: |          |         |        |                |                                             |         |        |                                       |       |                |                    |          |                                                               |
|                        | Sample Infor                           | mation         | _               |                       |          |               |          |         | -      |                | Test                                        | s Req   | uired  |                                       |       |                | -                  | -        | Comments                                                      |
| Envirolab Sample<br>ID | Client Sample ID or<br>information     | Depth          | Date<br>sampled | <u>Type of sample</u> | нат      | BTEX          | НМА      |         |        |                |                                             |         |        |                                       |       |                |                    |          | Provide as much<br>information about the<br>sample as you can |
|                        | MB01                                   | -              | 14/03/2022      | Water                 | x        | x             | ×        |         |        |                |                                             |         |        |                                       |       |                |                    |          |                                                               |
| -2                     | MB02                                   | -              | 14/03/2022      | Water                 | x        | x             | x        |         |        |                |                                             |         |        |                                       |       | _              |                    |          | nvirolab Services                                             |
| - 3                    | MB03                                   | -              | 14/03/2022      | Water                 | x        | x             | x        |         |        |                |                                             |         |        |                                       |       |                | ROLP               | Che      | NSW 2067                                                      |
| Ý                      | MB04                                   | -              | 14/03/2022      | Water                 | x        | x             | x        |         |        |                |                                             |         |        |                                       |       |                |                    |          |                                                               |
| <                      | MB05                                   |                | 14/03/2022      | Water                 | x        | x             | x        |         |        |                |                                             |         |        |                                       |       |                | db No              | Ţ.       | · · · · · · · · · · · · · · · · · · ·                         |
| 6                      | DUP01                                  | -              | 14/03/2022      | <u>Water</u>          | x        | x             | x        |         |        |                |                                             |         |        |                                       |       |                | Date Re            | reived   | 43,22                                                         |
| 1                      | R1                                     | -              | 14/03/2022      | Water                 | x        | x             | x        |         |        |                |                                             |         |        |                                       |       |                | Time R             |          | 1600                                                          |
| - G                    | тв                                     | -              | 14/03/2022      | <u>Water</u>          | ×        | ×             |          |         |        |                |                                             |         |        |                                       |       |                | Receive            |          | LM                                                            |
| 9                      | TS                                     | -              | 14/03/2022      | Water                 | х        | ×             |          |         |        |                |                                             | _       |        |                                       |       |                | Temp: (            |          |                                                               |
|                        |                                        |                |                 |                       |          |               |          |         |        | -              |                                             |         |        |                                       |       |                | Cooling<br>Cecurit | y: Intac | Broker Con                                                    |
|                        | L                                      |                |                 | l                     | ]        |               |          |         |        |                |                                             |         | I      |                                       |       |                |                    |          |                                                               |
|                        | Please tick the box if observe         | d settled sec  | liment preser   | nt in water samples   | is to be | inclu         | led in t | he extr | action | and/o          | r analys                                    | is      |        |                                       |       |                | <u> </u>           |          | , ,                                                           |
| Relinquished by (C     | company):                              | PRM            |                 | Received by (Comp     | any):    |               |          |         |        |                |                                             |         |        |                                       |       | Lab Us         |                    |          |                                                               |
| Print Name:            | Sarah Bolton                           |                |                 | Print Name:           |          |               |          |         |        |                | Job nu                                      | mber    |        |                                       |       | 1              |                    |          | ack / None                                                    |
| Date & Time:           | 14/03/2022                             | $\overline{a}$ |                 | Date & Time:          |          |               |          |         |        |                | Tempe                                       |         |        | Security seal: Intact / Broken / None |       |                |                    |          |                                                               |
| Signature:             | ·                                      | Sent           |                 | Signature:            |          |               |          |         |        |                | TAT R                                       | eq - S/ | AME da | <u>y / 1 /</u>                        | 2/3/4 | / STD          |                    |          |                                                               |

.



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

# SAMPLE RECEIPT ADVICE

| Client Details |                                     |
|----------------|-------------------------------------|
| Client         | Progressive Risk Management Pty Ltd |
| Attention      | Sarah Bolton                        |

| Sample Login Details                 |            |  |
|--------------------------------------|------------|--|
| Your reference                       | P034521    |  |
| Envirolab Reference                  | 290899     |  |
| Date Sample Received                 | 14/03/2022 |  |
| Date Instructions Received           | 14/03/2022 |  |
| Date Results Expected to be Reported | 21/03/2022 |  |

| Sample Condition                                       |          |
|--------------------------------------------------------|----------|
| Samples received in appropriate condition for analysis | Yes      |
| No. of Samples Provided                                | 9 Water  |
| Turnaround Time Requested                              | Standard |
| Temperature on Receipt (°C)                            | 22       |
| Cooling Method                                         | Ice Pack |
| Sampling Date Provided                                 | YES      |

Comments Nil

Please direct any queries to:

| Aileen Hie                   | Jacinta Hurst                  |
|------------------------------|--------------------------------|
| Phone: 02 9910 6200          | Phone: 02 9910 6200            |
| Fax: 02 9910 6201            | Fax: 02 9910 6201              |
| Email: ahie@envirolab.com.au | Email: jhurst@envirolab.com.au |

Analysis Underway, details on the following page:



Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

| Sample ID | vTRH(C6-C10)/BTEXN in Water | svTRH (C10-C40) in Water | PAHsin Water |
|-----------|-----------------------------|--------------------------|--------------|
| MB01      | $\checkmark$                | ✓                        | $\checkmark$ |
| MB02      | $\checkmark$                | $\checkmark$             | $\checkmark$ |
| MB03      | $\checkmark$                | ✓                        | $\checkmark$ |
| MB04      | $\checkmark$                | $\checkmark$             | $\checkmark$ |
| MB05      | $\checkmark$                | $\checkmark$             | $\checkmark$ |
| DUP01     | $\checkmark$                | $\checkmark$             | $\checkmark$ |
| R1        | $\checkmark$                | $\checkmark$             | $\checkmark$ |
| ТВ        | $\checkmark$                |                          |              |
| TS        | $\checkmark$                |                          |              |

The ' $\checkmark$ ' indicates the testing you have requested. THIS IS NOT A REPORT OF THE RESULTS.

#### **Additional Info**

Sample storage - Waters are routinely disposed of approximately 1 month and soils approximately 2 months from receipt.

Requests for longer term sample storage must be received in writing.

Please contact the laboratory immediately if observed settled sediment present in water samples is to be included in the extraction and/or analysis (exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, Total Recoverable metals and PFAS analysis where solids are included by default.

TAT for Micro is dependent on incubation. This varies from 3 to 6 days.